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Abstract—The main objective of this study is to present
a methodology to validate data augmentation using specific
techniques when the original data are very similar to each other;
to assess the diversity of the data, these two different approaches
to data validation had to be combined, using quantitative metrics
such as affinity and diversity used to estimate the similarity and
variability of the data; in addition to dimensionality reduction
techniques to visualize the distribution of the augmented data
over the original data. In particular, it was given a focus when
there is a class imbalance that adds another widespread problem
when trying to work with complex models; this combined
methodology provides a robust validation of the quality of the
augmented data, contributing to a better generalization and
performance of the data. For the particular case of this research,
the intention is to validate the diversity of a highly similar data
set obtained using eye-tracking techniques, in which 55 people
are evaluated using three psychometric tests.

Index Terms—Artificial Intelligence, Data Augmentation, t-
SNE, Machine Learning, Data Validation, Deep Learning, Data
Quality

I. INTRODUCTION

One of the main challenges when working with complex
machine learning models and, especially, deep learning models
is the fact that a large amount of data is needed for the
effectiveness of the different tasks (classification, detection,
segmentation, etc.), where quantity and diversity are of utmost
importance to avoid generalization of the models. ), where the
quantity and diversity are of utmost importance to prevent the
generalization of the models. The problem is that large and
labeled data sets are scarce or expensive to obtain, which is
why, to overcome this problem, there is a technique called
data augmentation, which consists of creating artificial data
controlled from accurate data [1], [2].

The problem of limited data sets affects the ability of
models to learn representative features, especially in complex
models such as Convolutional Neural Networks (CNN) when

used in classification tasks [3] since they usually require a
large number of examples to learn patterns to classify labeled
instances correctly, the most common failure when having
limited data is that the model usually fits the training data
very well but fails to classify the validation data [4], [5].

Data augmentation is widely used in model training, partic-
ularly when data availability is limited [6]–[8]. By artificially
expanding the training set, this method generates new in-
stances from the original data through various transformations.
These transformations include operations such as rotation,
translation, and adjustments in brightness and contrast. In addi-
tion to increasing the dataset size, data augmentation enhances
diversity, essential for improving the model’s generalization
ability. This process helps the deep learning model better
generalize to unseen data and reduces the risk of overfitting
[1], [9].

Another advantage of working with data augmentation is the
ability to balance classes when you have a very noticeable im-
balance, generating more examples of minority classes, which
would allow the model to be able to learn the classes equally,
helping it to improve performance in terms of accuracy and
sensitivity [10], [11].

In this context, class imbalance is a problem when using
Convolutional Neural Networks (CNN), as the lack of suffi-
cient examples can lead to the model only learning the features
of majority classes, making it unable to recognize the patterns
of underrepresented classes [4], [12]. This issue is particularly
detrimental in applications such as medical diagnostics, where
class imbalance is a common and critical concern [13].

Although data augmentation is used and recognized for its
effectiveness in increasing the amount of data, it is essential
to validate the quality and usefulness of the augmented data.
A problem that occurs when images are very similar is that
when trying to validate with standard techniques such as
cosine similarity or color analysis techniques is the fact that
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they usually yield results that indicate that there is minimal
variation between the original image and the augmented im-
age even though visually they look different; this is where
dimensionality reduction techniques come into play, such as t-
SNE (T-distributed Stochastic Neighbor Embedding) and PCA
(Principal Component Analysis). These techniques make it
possible to visualize the distribution of the original data and
the augmented data in a lower dimensional space, facilitating
the visual evaluation of the representativeness and diversity of
the data generated [14]–[16].

This work’s main contribution is validating the class bal-
ancing process through data augmentation and visualization
techniques such as t-SNE when the augmentation and real
data are very similar due to the characteristics of the image
by itself. These dimensionality reduction techniques evaluate
whether the augmented data behaves similarly to the original
data.

In addition to t-SNE and PCA, it is necessary to use more
ways to be able to validate the generation of the images, so two
concepts have to be taken into account: affinity and diversity,
which indicate the similarity between the generated images
and the original images, the aim is to have a medium diversity
and a low affinity, showing that the new data is diverse enough
but not so different from the original ones, ensuring that the
images still make sense when training the model [17].

Combining both validating methods provides a more robust
methodology for assessing the diversity and effectiveness of
class balancing through data augmentation. Assessing the
representativeness and diversity of the augmented data obtains
a more complete picture of the impact of data augmentation
on model performance.

Finally, this study aims to provide a straightforward method-
ology to validate data expansion effectively in terms of di-
versity and class balancing. This not only impacts improving
fairness in AI models but also offers a replicable method for
other researchers experiencing similar problems. Ensuring that
the augmented data is representative and diverse improves
the model’s ability to learn valuable features for all classes,
leading to a fairer and more efficient system.

II. RELATED WORKS

Data augmentation is an essential technique when using
robust models to solve data sparsity [18]–[20], but the valida-
tion of these synthetically created data is still a little explored
area; a common approach is the reduction of dimensionality
using statistical techniques such as t-SNE, as mentioned in
the work of Van der Maaten and Hinton [14] who explored
the distribution of the original data and the augmented data,
validating whether the data are sufficiently diverse without
being so original to the diverse ones. Another work that uses
this technique is the one developed by Kwok and Wong [16],
which seeks to analyze the quality of the generated data.

Another technique using dimensionality reduction to vali-
date data augmentation is PCA, where research conducted by
de Bro and Rasmus [15] and Abayomi-Alli [21] use PCA as
a way to project the augmented data and the original data

into a lower dimensional space, to assess the distribution and
similarity of the data. Other research relies on the use of PCA
to determine whether the augmented data represent the same
general structure as the general data by visually validating the
effectiveness of these data [22]–[24].

In addition to validations through visual inspections, some
techniques propose quantitative metrics to validate data aug-
mentation, such as affinity and diversity, which are essential
metrics to measure the quality of the generated data, in
the research proposed by Gao [12] makes use of Euclidean
distance and correlation coefficient to quantify the similarity
between the augmented data and the original data, proving
helpful to determine whether the data are representative and
diverse.

When working with deep learning, techniques based on
the generated embeddings are proposed; Ozgode and Saygili
[25] developed a confidence estimation algorithm for the
embeddings generated by t-SNE, which allows validating the
quality of the data augmented through these generated em-
beddings. This approach helps identify whether the generated
data contributes positively to the training set or introduces
unwanted noise.

Another approach that has been emerging for years is the
use of generative adversarial networks (GANs) introduced by
Goodfellow [26], which, through other research, are used to
assess the quality of augmented data, as presented by Radford
[27] and Zhang [28], which evaluate whether the data are
realistic and practical for training classification models. The
importance of GANs lies in their ability to generate synthetic
data that is almost indistinguishable from accurate data.

All these works related to the research addressed using
data sets with very well-defined classes, so individual ap-
proaches are usually insufficient as validation techniques when
encountering similar original data. Combining two or more
methods is necessary when wanting to estimate the quality of
the augmented data.

III. METHODOLOGY

Figure 1 represents a flow chart of the methodology pro-
posed for validating the images generated from the original
data.

The methodology used to evaluate the quality of the gener-
ated images combines visualization techniques with quantita-
tive metrics, as previously mentioned. This approach assesses
the representativeness and diversity of the generated images,
aiming to ensure that the applied transformations preserve or
enhance the essential characteristics. The goal is to enable
accurate representation of minority classes and improve the
model’s capacity to learn and generalize effectively.

Cabrera developed the database used in this research [29];
this database is used to be able to determine the level of
attention of the individuals, which consists of three categories
by obtaining eye trajectory data from 55 people through an
eye tracker, evaluated through a series of 3 psychometric tests;
table I represents the distribution of the original data of each
category for each test.
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Fig. 1: Flow chart proposed

Test Low Level Medium Level High Level Total
Domino 21 4 18 43
Unfolded Cubes 4 17 21 42
Figure Series 27 8 12 47

TABLE I: Labels distribution

It is possible to determine the imbalance of the categories,
in which some classes barely contribute to 10% of the total
data, so when training an artificial intelligence model with this
information, it would be tough to determine that the model
learns enough to classify that minority category compared to
the other two majority categories, another problem is that when
generating three categories of the same image depending only
on specific unique characteristics per category may be unclear
how they differ from each other, figure 2 represents the three
categories of a test, in which the similarity between each
category can be observed. If individual validation techniques
analyze the images, little distribution of images will be ob-

tained. To solve these two problems, we propose this combined
validation by balancing the classes through data augmentation,
allowing to guarantee that the images are unique and, at the
same time, are representative of the original images.

(a) High Level

(b) Medium Level

(c) Low Level

Fig. 2: Example of the data classification used in the database
to measure attention levels [29]

A. Data Augmentation

Once the number of subjects per class is determined, the first
step is to balance these classes by data augmentation. Class
balancing is paramount as it helps the model have the same
data per category. In the project, a function was developed to
apply stochastic transformations such as rotation, translation,
zoom, and color change to the images in the dataset. These
transformations add visual variation to the images, improving
the model’s generalization and reducing overfitting to limited
data.

The ranges of each transformation are as follows:
• Translation: This function shifts the image horizontally

and vertically. Parameters: x‘ : X − axis (horizontal)
offset in pixels. Range: [−10, 10]. y‘ : Y − axis
(vertical) offset in pixels. Range: [−10, 10]. Description:
A translation matrix moves the image in the 2D plane.
The displacement range is randomly defined between
−10 and 10 pixels, which allows the image to move
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both left/right and up/down.

• Zoom: This function zooms in on the image. Parameters:
factor: Zoom factor applied to the image. Range:
[1.0, 1.5]. Description: The image is resized using a
random zoom factor. A factor greater than 1.0 indicates
a zoom-in, while a factor less than 1.0 (though not used
here) would indicate a zoom-out. The resulting image is
centered to maintain the same resolution.

• Rotation: This function rotates the image around its
center. Parameters: angle: Rotation angle in degrees.
Range: [−30, 30]. Description: Uses a rotation matrix to
rotate the image around its center. The rotation angle
is randomly selected between −30 and 30 degrees,
allowing clockwise and counterclockwise rotations.

• Brightness: This function adjusts the image’s brightness.
Parameters: Factor: Brightness adjustment factor. Range:
[0.8, 1.2]. Description: The brightness of the image is
modified by a multiplicative factor. A factor greater than
1.0 increases the brightness, while a factor less than 1.0
reduces it. This allows you to create variations of the
image with different brightness levels.

Fig. 3: Data Augmentation diagram process

Figure 3 shows how the data augmentation process of
each image is randomized to avoid bias towards a specific
transformation that benefits the model, ensuring that the im-
ages are generated uniformly. Likewise, to avoid developing
more images than possible per test, it was estimated how
many unique images per image can be generated; as each
transformation is randomly selected, it is guaranteed that only
one transformation per image is applied; the calculation of
these images is presented in table II.

Transformation Type Combinations
Translation (X, Y from -10 to 10 px) 441
Zoom (Factor 1.0 to 1.5, step 0.01) 50
Rotation (Angle -30 to 30 degrees, step 1) 61
Color Adjustment (Factor 0.8 to 1.2, step 0.01) 41
Total Possible Combinations 593

TABLE II: Summary of Discretized Transformation Combi-
nations

As can be seen in table II, it is possible to generate
593 unique images without repeating the process, so for this
project, a limit of 700 images per class was established, having
a total of 2100 images, thus finalizing the balancing of the
classes through data augmentation.

B. Feature extraction

When balancing the data, to perform the analysis of the
augmented data, it is necessary to extract the characteristics of
the images; this is a previous stage to the analysis since it helps
us to obtain the characteristics of the images numerically, in
the case of the project a CNN was used with the frozen dense
cells for the extraction of the characteristics. Specifically, the
model used is a VGG16 [30]; this allows us to represent the
images as vectors of information of characteristics of high
dimension, facilitating the analysis of similarity and diversity.

C. Diversity Evaluation

The diversity of the dataset refers to the measure of variabil-
ity between the original and synthetic elements. This metric
is critical in data augmentation validation applications, as it
allows one to evaluate the different points within the feature
space.

To measure and evaluate the diversity of the augmented data,
it is necessary to calculate the Euclidean distance between the
generated images and the real images; this helps to identify
whether the set of augmented images covers an adequate
range of variations. The Euclidean distance between images
is calculated as follows,

Diversity =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

∥xi − xj∥ (1)

Where
(
N
2

)
= N(N−1)

2 is the total number of possible
combinations of two distinct elements of the data set, thus
ensuring that each pair (i, j) is counted only once [31].

This version of the metric is frequently used in analysis
to assess the dispersion of points within a group. Using
unordered combinations avoids counting duplicates, which
provides an accurate and consistent representation of the
internal variability of the data [32]. In the context of machine
learning, measuring the diversity of a data set is critical to
assess whether the points generated using data augmentation
techniques are sufficiently varied, which can improve the
generalization of the model [33].
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D. Affinity Evaluation

The affinity measures the similarity between each class’s
synthetic and original images. This allows us to determine
if the variations are significant or too similar. The following
parameters must be calculated to determine and evaluate the
affinity per class:

• Calculate the Average of Characteristics per Class:
For each class c, it calculates the average of the features
of all images belonging to that class:

x̄c =
1

Nc

Nc∑
i=1

xi (2)

where xi is the feature vector of the image i in the class
c, and Nc is the number of images in the class c.

• Calculate the Average Distance per Class: The affinity
is calculated as the average of the Euclidean distances
between all pairs of images in the same class:

Affinityc =
1

Nc(Nc − 1)

Nc∑
i=1

∑
j ̸=i

∥xi − xj∥ (3)

where ∥ · ∥ represents the Euclidean norm.

• Average Affinity: The overall affinity is obtained by
averaging the affinity of all classes:

Affinityavg =
1

C

C∑
c=1

Affinityc (4)

Where C is the total number of classes.

Once the affinity has been calculated, the following analysis
should be performed, where a value Close to 0 indicates
that the images within a class are very similar. This may be
desirable because the images are consistent and homogeneous,
which is helpful for model training. However, if the affinity is
too low, it may be a sign of overfitting if the model is seeing
too little range of variation. A value near 1.0 indicates that the
images within a class are very different. This can be a problem
because images within the same class do not share enough
common characteristics, making it difficult for the model to
learn about the factors that define that class [17].

E. Validation with Dimensionality Reduction Techniques

Once diversity and affinity metrics have been calculated,
it is necessary to visually validate the distribution of the
generated images, for which dimensionality reduction
techniques are needed to visualize them in a two-dimensional
space since the vectors generated through feature extraction
are of high dimensionality. The methods used are as follows:

1) PCA: It is a dimensionality reduction technique used to
transform a high dimensional data set into a lower dimensional
data set [15], [34] while retaining as much of the variability of
the data as possible. This is achieved by identifying principal
directions (also called principal components). These compo-
nents are linear combinations of the original variables and are
ordered such that the first principal component captures most
of the variability; the second captures most of the variability
that was not captured by the first, and so on [31], [33], [35].

Visualizing the original and augmented data in the same
space allows visualizing if the augmented data are well dis-
tributed concerning the original data. Suppose the augmented
data are distributed around or over the original data. In that
case, it indicates that the data augmentation is adequate since
data similar to the original data are being generated but with
variations that do not make them identical; if there is no
variation or they are too concentrated among themselves, it
means that the augmented data do not represent sufficient
diversity.

To calculate the principal components, the following steps
are performed:

1) Standardize the Data: First, the data set is standardized
so each feature has a mean of zero and a variance of one.
This can be written as:

X ′ =
X − µ

σ
(5)

Where:
• X is the original data set,
• µ is the mean vector of the data set, and
• σ is the vector of standard deviations.

2) Compute the Covariance Matrix: Next, the covariance
matrix C of the standardized data is calculated:

C =
1

n− 1
X ′TX ′ (6)

Where:
• X ′ is the standardized data set,
• n is the number of observations.

3) Compute Eigenvectors and Eigenvalues: The next step
is to compute the eigenvectors (v) and eigenvalues (λ)
of the covariance matrix:

Cv = λv (7)

The eigenvectors represent the principal components,
and the eigenvalues represent the variance explained by
each principal component.

4) Order and Select Principal Components: The eigen-
vectors are ordered by the eigenvalues in decreasing
order to determine the principal components that capture
the most variance. Typically, the first k eigenvectors are
selected, where k is the desired number of dimensions.

5) Project the Data: Finally, the standardized data set is
projected onto the selected eigenvectors to obtain the
transformed data:
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Y = X ′Vk (8)

Where:
• Y is the transformed data set,
• Vk is the matrix containing the first k eigenvectors.

This process reduces the dimensionality of the data while
retaining as much information as possible in terms of variance.

2) t-SNE: Like PCA, it is a dimensionality reduction
technique, mainly used for the visualization of data in low
dimensional spaces (2 or 3 dimensions) [36]; it is beneficial
because the vector is high dimensional and serves to find
inherent patterns since it seeks to understand the relationship
between groups of data. In this case, it is applied to compare
the augmented data with the original data.

If the augmented data and the original data form overlap-
ping clusters, they share very similar characteristics, which
indicates that the augmented data are of adequate quality and
reflect the properties of the original data. On the other hand,
if the clusters are widely separated and dispersed, it indicates
that the augmented data does not represent the characteristics
of the original distribution.

t-SNE converts the high-dimensional Euclidean distances
between data points into conditional probabilities representing
similarities. The technique tries to minimize the divergence
between two distributions: one that measures pairwise simi-
larities in the high-dimensional space and one that measures
pairwise similarities in the low-dimensional space. The objec-
tive function is defined as:

C =
∑
i

∑
j ̸=i

Pij log
Pij

Qij
(9)

Where:
• Pij represents the similarity between high-dimensional

points xi and xj .
• Qij represents the similarity between low-dimensional

points yi and yj .
The similarity Pij is calculated using a Gaussian distribution

centered at point xi:

Pj|i =
exp(−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
(10)

where σi represents the variance of the Gaussian centered
on xi.

The low-dimensional similarity Qij is defined using a
Student t-distribution with one degree of freedom:

Qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

(11)

By minimizing the cost function C, t-SNE aims to ensure
that similar points in the high-dimensional space remain close
in the low-dimensional embedding. In contrast, dissimilar
points are modeled far apart. This makes t-SNE a powerful
tool for visualizing the data structure and assessing the quality
of the augmented dataset.

IV. RESULTS

This section presents the results obtained in each method-
ology step from the techniques described and implemented in
the study. The results will focus on how data augmentation
improves the quality and representativeness of the original
dataset.

In addition, comparative analyses will be presented between
the characteristics of the augmented images and the original
ones through affinity and diversity. Finally, the results will
validate whether the data augmentation has contributed to a
good distribution of the data, and visual validations will be
made through dimensionality reduction techniques.

After balancing the classes presented in the table I, the
classes present the results in the table III. Estimates were made
heuristically to determine that in comparison of metrics and
computational expense, 700 images per test were sufficient to
estimate all metrics; as can be seen, the classes have the same
amount of images with a total of 2100 images per test.

Test Low Level Medium Level High Level Total
Domino 700 700 700 2100
Unfolded Cubes 700 700 700 2100
Figure Series 700 700 700 2100

TABLE III: Labels distribution after balancing

In addition, the augmented images can be seen randomly in
figure 4, which generates the transformations of each image;
for the visual representation, only the results of the increased
data from one test will be shown, even though all three tests
have been balanced, the other results will show all three tests.

Fig. 4: Data augmentation representation

After balancing the classes, the similarity between the aug-
mented and original images can be observed, which prompted
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further exploration of further validation techniques. As de-
scribed in the methodology, the diversity and affinity metrics
are calculated, and the results of each test are presented in the
following tables:

Diversity Domino Cubes Figures
Original data 16.9536 15.8990 17.6986

Data augmentation 24.0319 26.4942 27.1704

TABLE IV: Diversity of Classes

Table IV shows how, after implementing data augmentation,
the diversity of each test increased without losing the main
characteristics of each original image, indicating that there
is a large number of examples per class that can be passed
to the model to work with, demonstrating a high range of
variations of each image, allowing to work with complex
models.

Affinity by Class Domino Cubes Figures

Class 1 18.4720 15.7035 17.36037
24.1867 26.0103 26.7926

Class 2 16.2699 17.9823 19.8720
22.4138 26.5377 26.2795

Class 3 16.1854 14.5449 18.3725
24.6234 26.0252 27.5354

TABLE V: Affinity by Class

As table V shows, a steady increase in the affinity between
the two established metrics can be observed, indicating that
data augmentation has been successful in generating new
images that are more similar to the original images of the
same class, which is critical to improving the performance of
the model in classification tasks.

The next step involves visually inspecting the distribution
of the augmented data compared to the original data using
dimensionality reduction techniques. This will include com-
paring both PCA and t-SNE, where a uniform distribution
is expected. Achieving such a distribution would validate the
findings proposed in this research.

It can be observed that in figure 5, the distribution of the
classes of the domino test has a high variability, complement-
ing with the quantitative metrics, it can be determined that the
data increase has a high quality, ensuring that there is a high
range of examples per class without these being necessarily
the same as the original image but also not so different that it
does not make sense with the original image.

(a) Original Data PCA (b) Data Augmentation PCA

(c) Original Data t-SNE (d) Data Augmentation t-SNE

Fig. 5: Analysis using PCA and t-SNE for Domino test data
with and without data augmentation.

(a) Original Data PCA (b) Data Augmentation PCA

(c) Original Data t-SNE (d) Data Augmentation t-SNE

Fig. 6: Analysis using PCA and t-SNE for Figure series test
data with and without data augmentation.

As with the domino test, it can be estimated after seeing the
figure 6 that the diversity of the augmented data for the figure
series test has a high but representative dispersion, preserving
the main characteristics of the original data.

The behavior of the cube test data is very similar to the
domino test; after looking at the figure 7, that shows all tests
have a high variability of images from the original images,
even though the original images are very similar to each other
on visual inspection.

Memorias del Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2024.

 213



(a) Original Data PCA (b) Data Augmentation PCA

(c) Original Data t-SNE (d) Data Augmentation t-SNE

Fig. 7: Analysis using PCA and t-SNE for Cubes test data
with and without data augmentation.

V. CONCLUSIONS

The validation of data augmentation on sets of very similar
images is still a task that has been little explored; besides being
a prevalent task along with class imbalance, it is expected that
with this research, a robust methodology to determine valida-
tion by combining quantitative techniques such as component
analysis will be proposed, such as diversity and affinity in
the quantitative metrics part, as well as t-SNE and PCA in
the component analysis techniques, since they allow us, in
addition to visual inspection, to determine how varied our set
is before and after data augmentation.

One of the findings is that it is possible to validate the
variability of the augmented images even though the original
images are very similar between classes, allowing us to work
with more data on these characteristics in the future. As
observed in the results section, the distributions were uniform,
avoiding excessive conglomerations on the original images and
increasing affinity and diversity after balancing the classes.

This may impact the future by allowing more robust models
to be used when data have similar characteristics, helping to
avoid overfitting and making them more sensitive to detecting
unique attributes of each class.

Future work remains to validate these new datasets through
artificial intelligence models, such as machine learning and
deep learning models, and to examine what other metrics could
help validate the information as more data becomes available.

In conclusion, the paper highlights the importance of val-
idating data augmentation techniques using a comprehensive
approach that combines visualization tools (t-SNE and PCA)
and quantitative metrics (Affinity and Diversity). These meth-
ods provide an in-depth analysis of the quality and effective-
ness of the data generated, ensuring that the data generated

not only increases the number of samples per class but also
preserves the essential characteristics of the class to which
they belong.
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