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Classification of Hand Movements Using EMG 

Spectrograms and CNN-Based Architectures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Abstract— Electromyographic signals (EMG) provide important 

information corresponding to muscle contraction; thanks to 

technology, obtaining the signals is nowadays applicable in vast 

areas of medicine. Our research aims to make this technology even 

more practical and relevant. 

However, artificial intelligence applications using myoelectric 

signals are constantly developing, which may pose a problem, 

mainly in individuals who have undergone amputations. The 

ability to maintain an efficient connection between the brain and 

muscles is gradually limited over time, reducing the potential use 

of myoelectric signals. 

By leveraging the principles of surface electromyography 

(sEMG) and a Myo Armband device, we propose to transform 

myoelectric signals into spectrograms and classify four 

movements using a convolutional neural network (CNN))--based 

models The results obtained are summarized with 91% for the 

LeNet-5 model, outperforming a simple CNN model, which 

attained 89%, and significantly surpassing the VGG16 model, 

which yielded an accuracy of 86%. These findings validate that 

CNN-based models can effectively classify muscle movements 

with high precision, particularly when combined with spectrogram 

representations of EMG signals. We compare the results with 

those of other models. The objective is to take advantage of non-

stationary signals, convert them into spectrograms, and use their 

characteristics to classify them. 

Keywords—Electromyographic signals, private database, 

EMG, spectrograms, classification 

I. INTRODUCTION 

 

EMG signals are generated through muscle contraction. 

They provide relevant information about the electrical activity 

of the muscles. These signals are generated when electrical 

impulses from the nervous system activate the muscles and 

can be captured by electrodes placed on the skin’s surface 

(sEMG) or inside the muscle (intramuscular EMG). [1] 

EMG signals belong to the bioelectrical signals, which 

provide information not only about the electrical activity of 

muscles but also about organs and the central nervous system. 

[2]  

EMG signals are first generated in the brain, where 

voluntary commands concerning movement are initiated. The 

motor neurons are activated when a decision is made to move 

a muscle (such as lifting the arm). 

These signals are generated when we think of the 

movement descending from the brain to the spinal cord 

through the motor pathways. These pathways carry the signals 

from the brain to the spinal cord levels corresponding to the 

muscles to be activated. In the spinal cord, the signals reach 

the motor neurons that transmit the electrical impulse to the 

muscles via the peripheral nerves. When the electrical impulse 

reaches the neuromuscular junction, a neurotransmitter called 

acetylcholine is released, thus activating muscle contraction. 

[3-5] 

This whole process can be summarized as shown in Figure 

1. 

 

 

 

 

 

 

 

 

 

In Figure 2 shows the electrical activity of the muscle 

fibers that occurs during contraction is recorded as an EMG 

signal 

 

Figure 2. Representation of EMG signal. Adapted from [5]. 

Figure 1. Process to generate a muscle contraction. Adapted from [5] 
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Figure 3. Representation of a Myo Armband.[14].  

Techniques exist to obtain electromyographic signals 

when movement is generated. However, it is essential to 

consider that the signal is not recorded under ideal conditions. 

These signals are often contaminated by noise or interference 

from various sources, such as the electrical activity of other 

muscles, environmental noise, or interference from electronic 

equipment. [6] In addition, body movements and poor 

electrode contact can introduce artifacts that complicate the 

correct interpretation of the signals.  

The subject's anatomical, physiological, and nervous 

system characteristics affect the amplitude, time, and 

frequency properties of EMG signals. However, the 

measuring equipment used is also necessary. [7] Therefore, it 

is essential to consider actions when measuring an EMG 

signal, such as the intensity of the muscle contraction, the 

distance between the electrode (or sensor) and the muscle, and 

the amount of adipose tissue of the subject. As well as the level 

of contact between the skin and the electrode. [8] 

Using spectrograms to analyze EMG signals can be an 

effective tool for mitigating noise problems from different 

sources. A spectrogram is a graphical representation that 

shows how the frequency of a signal varies over time.[9] By 

decomposing EMG signals into their frequency components, 

the spectrogram allows for identifying and isolating specific 

frequencies associated with noise, such as power line 

interference (50/60 Hz) or motion artifacts, typically in 

defined frequency ranges. 

Works related to artificial intelligence follow the 

methodology of obtaining EMG signals and converting them 

into spectrograms. 

Dawei H and Badong Ch. [10] explore sEMG 

classification to recognize hand movements, employing 

spectrograms, convolutional neural networks (CNNs), and 

long- and short-term memory (LSTM) neural networks. The 

main goal of the work is to decipher motion intention from 

sEMG signals. The study uses the Ninapro database, which 

provides a robust dataset with sEMG signals from 40 subjects 

performing 49 different gestures. This database is a standard 

reference for evaluating and comparing the effectiveness of 

sEMG classification methods. The proposed approach showed 

an accuracy of 79.329% for hand movement recognition. 

Tryon J and Trejos AL. [11] investigate the use of CNNs 

to fuse electroencephalography (EEG) and EMG signals to 

improve the control of wearable robotic exoskeletons. 

EEG and EMG signals were obtained from 32 healthy subjects 

during elbow flexion and extension movements, varying the 

speed of the movement and the weight they were holding. 

CNN models were trained to classify tasks based on weight 

held during elbow movement, allowing the system to adjust to 

user conditions dynamically. The authors present that the 

spectrogram-based models outperformed the chance level 

(33.33%), achieving an average accuracy of 80.51% ± 8.07% 

with the stacked fusion model, which showed superior 

performance to models based solely on EEG or EMG. The 

stacked fusion model obtained an accuracy of 80.03% ± 

7.02%, which also outperformed the individual EEG and 

EMG models, although in some cases, the differences were 

not statistically significant. 

Jingwei T. et al. [12] present an approach for pattern 

recognition in EMG signals without resorting to manual 

feature extraction. They use spectrograms as direct input to a 

convolutional neural network (CNN) for hand and wrist 

motion classification. The study uses the NinaPro database 

data to evaluate two CNN architectures, including EMG 

signals from healthy subjects and amputees. The results 

indicate that the CNN-based approach can achieve an average 

accuracy of 88.04% in motion classification, demonstrating 

the effectiveness of this method in automatically classifying 

EMG signals without the need for manual preprocessing. 

Thanks to the advances achieved in previous work, it is 

possible to address pattern recognition in EMG signals, 

obtaining better results in CNN-based architectures. However, 

it is also essential to consider that some previous works use 

public databases, which mainly obtain data in controlled 

conditions, with high-quality equipment, and, generally, with 

data ready for analysis. That is why, by using a private dataset 

containing myoelectric signals from 50 subjects obtained with 

a Myo Armband [13], a methodology for processing and 

classification of 4 movements using the signals converted into 

spectrograms is proposed. To validate the robustness of the 

proposed methodologies for EMG signal processing and 

classification. This will not only provide further 

generalization of the models but will also provide a framework 

for improving performance in real-world applications. 

II. METHODOLOGY 

A. Dataset 

Data were acquired for Ramírez [13] to the Universidad 

Autonoma de Querétaro using a Myo Gesture Control 

Armband developed by Thalmic Labs. 

 

 

 

 

 

 

 

 

Myo Armband is a device that reads muscle activity in the 

subject's forearm using eight sensors, as shown in Figure 3, 

that function like surface electrodes. The bracelet was used to 

recognize hand position gestures and determine the muscles 

involved in those gestures. In addition, the bracelet has an 

accelerometer and a gyroscope to obtain the acceleration and 

orientation of the arm. [14, 15] 

A total of 50 healthy people (i.e., they did not have motor 

problems or amputations) participated in the data collection. 

The age range was 18 to 60. There were 29 males and 21 

females. 

In our case study, we will only use four classes from the 

total dataset, including ulnar deviation, flexion, power grip, 

and initial position—all movements obtained from the right 

arm. 
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In Figure 4, the movements are described. 

 

Movement name Movement Description 

 

 
 

Initial position 

 Hands in the initial 

position, palm 
extended with fingers 

closed, without 

exerting too much 
force on them. From 

this posture, the 

subsequent 

movements will begin. 

 

 
 

 

Ulnar deviation 

 

The arm is close to the 

trunk, the elbow is in 
90° flexion, the hand 

is in the initial 

position, and the arm 
moves without moving 

the elbow, bends 

downwards, and 
returns to the initial 

position. 

 
 

 

 

 

Flexion 

 

 

The arm is close to the 
trunk, the elbow is in 

90° flexion, and the 

hand is in the initial 
position. The palm is 

brought inwards 

without moving the 
elbow, facing the 

body, and then 

returned to the initial 

position. 

 

 
 
 

Power grip 

 

Arm close to the trunk, 

elbow in 90° flexion, 
hand in the initial 

position, proceed to 
move; make a fist, 

leaving the thumb 

outside over the other 
fingers, and return to 

the initial position. 

Figure 4. Movements made by 50 subjects. 

Each participant executed the movement five times in 

three seconds, starting from second 1. This method allows us 

to determine when the movements (or events) start correctly.  

It is worth mentioning that a notch filter was applied to 

attenuate the 60Hz frequencies generated by the power line 

when the data were acquired. 

B. Processing 

Once the data is acquired, it can be processed for 

subsequent use in training. 

We previously commented that EMG signals present 

different distortions in a natural environment that directly 

affect the target we aim at. Therefore, applying a post-data 

acquisition filtering stage is necessary to reduce the problems 

when using the signals. [16] 

As a first instance, we visually reviewed our signals to 

understand the nature of the signals (once the data were 

acquired). In this way, we can appreciate what type of logic 

needs to be applied. 

Figure 5 compares the signals of the first subject obtained 

for the four movements using sensor 0. 

Movement Signals from sensor 0 for the 1st 

subject 

 

 

 

 

Initial 

position 

 

 

 

 

 

Ulnar 

deviation 

 

 

 

 

 

 

Flexion 

 

 

 

 

 

Power grip 

 

 

Figure 5. Comparison of the signals of the four movements obtained for the 

1st subject using the 0 sensor. 

As can be seen, unlike the initial position movement, the 

ulnar deviation, flexion, and power grip movements obtained 

very similar signals in sensor 0. The initial position class (or 

movement) will be considered a control class since, in this 

class, the signals obtained during the 16 seconds are empty 

(i.e., without any representative event). 

Notably, the Myo Armband has eight sensors, so we have 
eight signals for each subject. In addition, despite applying a 
notch filter, the signals maintain a large amount of noise. For 
our processing logic, we use the wavelet transform to clean 
the noise from different sources present in our signal. 

• Wavelet transform (WT) 

 

The WT is a tool for simultaneously analyzing signals in 

the time and frequency domains. It allows the decomposition 

of a signal into components of different scales and resolutions, 

which is ideal for cases such as the present one, where non-

stationary signals, i.e., signals that change over time, are 

handled. [17] 

They are short-time mathematical functions used to 

represent a signal. They are scaled and shifted to fit different 

signal parts, allowing better resolution in both time and 

frequency.  
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Under the Wavelet Transform concept, the goal is to 

employ windows to analyze different portions of the signal of 

interest. This approach raises the question: How do we 

analyze a signal if we only segment it into windows of itself? 

In this context, the concept of the mother wavelet comes into 

play, which is used as a basis function for comparison with the 

segmented signal. 

As shown in equation (1), Scaling and translation are two 

fundamental operations that adapt the mother wavelet. Scaling 

allows the wavelet to be adjusted, expanded, or compressed to 

capture details at different resolutions. On the other hand, 

translation moves the wavelet along the signal, allowing 

analysis at various time positions.  

 

𝑊𝑓(𝑠, 𝜏) = ∫ 𝑓(𝑡)Ψ𝑠,𝜏(𝑡)𝑑𝑡  (1) 

 

 

In this way, the wavelet transform offers a multiresolution 

analysis in the time-frequency domain. 

Equation (2) describes that the WT allows the signal to be 

decomposed into low-frequency components (associated with 

overall signal trends) and high-frequency components 

(capturing details or fast fluctuations). This facilitates the 

identification and elimination of noise, improving the 

interpretation and processing of the original signal. [18-20] 

 

Ψ𝑠,𝜏(𝑡) =
1

√𝑠
Ψ(

𝑡−𝜏

𝑠
)               (2) 

 

 

By this logic, the mother wavelet must have a similar trend 

to our signal. 

Different signals exist within the wavelet family; selecting 

the signal to be used depends on the problem to be addressed. 

Table 1 shows the 324 wavelet functions that can be used for 

different purposes, organized in 15 families. [1] 

EMG signals, which are highly fluctuating, require a 

wavelet that can adapt to their rapid variations, enabling 

accurate time-frequency analysis.  

The Daubechies wavelet is an optimal choice because it can 

represent both local and global features of the signals and is 

suitable for denoising. In addition, the Daubechies wavelet has 

been widely used in previous studies on biomedical signal 

analysis, demonstrating its effectiveness in improving the 

interpretation and processing of electromyographic signals. 

 

Wavelet 

family name 
known 

name 
Wavelet 

number 
Graphic 

representation 
 

Haar 

 

 

Db1 

 

1 
 

 

Daubechies 

 

db2-db45 

 

 

2-45 
 

 

 

Coiflet 

 

coif1-coif5 

 

46-50 
 

 

 

Morlet 

 

morl 

 

51 
 

 

Complex 

discrete 

morlet 

 

 

 

cmor 

 

 

52-147 

 

Discrete 

meyer 

 

 

dmey 

 

148 
 

 

Meyer 

 

meyr 

 

149 
 

 

 

Mexican hat 

 

 

 

mexh 

 

 

 

150 

 

 

Shannon 

 

shan 

 

151-200 
 

 

B-Spline 

(Basis 

splines) 

 

 

 

fbsp 

 

 

201-260 

 

 

Gaussian 

 

gaus 

 

261-267 
 

 

 

Complex 

gaussian 

 

 

 

cgaus 

 

 

268-275 

 

 

Biorthogonal 

 

bior 

 

276-290 
 

 

 

Inverse 

biorthogonal 

 

 

 

rbio 

 

 

291-305 

 

 

 

Symlet 

 

sym 

 

306-324 
 

 
Table 1. List of the 324 wavelets sorted into 15 families. 

Once the mother wavelet is selected and applied, the 

mathematical logic described in equations (1) and (2) is used 

to our signals. Our signals will have eliminated the noise 

caused by different artifacts. Figure 6 Compares an 

unprocessed signal with a processed signal. 

 

 

 

• Segmentation 

 

 

 

As previously mentioned, participants repeated each 

movement, so the total time of data collection was 16 seconds, 

and five movements were performed within that period.  

The data were segmented as separate events as part of the 

processing, so each participant provided five events. Using 

equation (3) resulted in 250 events per movement. 

 

(5 𝑒𝑣𝑒𝑛𝑡𝑠 ∗  5 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠)  =  250 𝑒𝑣𝑒𝑛𝑡𝑠  (3) 

Figure 7. Comparison between a raw signal and its conversion with WT 

Db20. 

Figure 6. Application of WT to a noisy signal. 
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The authors of the dataset specify that the data were taken 

every 3 seconds, so that, in the total space, windows of 3 

seconds were taken starting at 0.5 seconds and increasing 3 

seconds between windows, so that the segmentations were 

performed at times 0.5-3.5, 3.5-6.5, 6.5-9.5, 9.5-12.5, 12.5-

15.5. In this way, we ensured that important information 

regarding an event was included in the segmentation space. 

After applying the segmentation to the processed data, we 

obtain the events and store them in separate segments. Figure 

7 shows an example of segmentation with the previously 

specified times. 

 

.  

Finally, by segmenting the data into events, separating 

them, and using equation (4), we have 1000 data (among the 

four classes), which are also divided into eight sensors, which 

can be used as input to the models. 

 

(250 𝑒𝑣𝑒𝑛𝑡𝑠 ∗  4 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)  =  1000 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎  (4) 

 

• Spectrograms 

Spectrograms are visual representations that show how the 

energy of a signal is distributed over time and frequency. 

There are different methodologies for generating 

spectrograms, from the Wavelet Transform to the Fourier 

Transform. For our purpose, we propose using the Short-Time 

Fast Fourier Transform (STFT) to generate the spectrograms 

of the segmented signals to combine the logic applied for 

processing our data by WT with the logic of the STFT.  

STFT allows for dividing the signal into smaller segments 

and applying the Fourier Transform to each of them, which 

provides a representation in the time-frequency domain, 

which is ideal for analyzing non-stationary signals such as 

EMG. In our case, having segmented windows, we apply the 

Fourier transform to our segment directly. 

Using the STFT, it is possible to generate a two-

dimensional representation. Thus, a spectrogram is a two-

dimensional image where one axis represents time, the other 

axis represents frequency, and the intensity of the color or 

luminosity at each point of the image indicates the amplitude 

or energy of the signal at that frequency and at that specific 

time. [21] 

The STFT of a discretized signal 𝑥(𝑛) is defined as 

equation (5): 

 

𝑥(𝑛) =  𝑋(𝑚, 𝜔) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑚) ∗ 𝑒−𝑗𝜔𝑚∞
𝑛=−∞  (5) 

 

Where x(n) is the EMG signal in the time domain, w(n) is 

the window function that is applied to the signal to limit the 

analysis to a specific time segment, m is the index representing 

the displacement of the window in time, 𝜔 is the angular 

frequency and 𝑒−𝑗𝜔𝑚 is the Fourier transform term 

representing the complex oscillation. [22] 

In this way and following a logic similar to WT, by 

applying STFT to the segmented EMG signal, complex values 

𝑋(𝑚, 𝜔) are obtained that represent the amplitude and phase 

of the different frequencies in each time segment. These 

values are used to create spectrograms, which are visual 

representations of signal energy as a function of time and 

frequency.  

Figure 8 shows the result of the conversion of a segment 

into a spectrogram. 

 

 

 

Once the conversion of the segments into spectrograms 

has been applied, the data is ready to be used as input for a 

motion classifier. 

• Models used 

 
CNN-based models will be used to classify muscle 

movements in this work. Thanks to the state of the art, it has 
been confirmed that these models are particularly effective in 
image classification tasks and complex pattern analysis due to 
their ability to extract spatial and temporal features. 
Convolutional Neural Networks (CNNs) have demonstrated 
excellent performance by leveraging multiple convolutional 
and pooling layers to learn hierarchical representations of 
data, making them suitable for tasks such as gesture 
recognition, speech processing, and muscle movement 
classification from bioelectrical signals. 

Figure 7. Segmentation of the signals. 

Figure 8. Conversion of the signal into a spectrogram. 

Memorias del Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2024.

 203



The first model used is a simple CNN, and its architecture 

is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

The architecture consists of two convolution layers, which 

detect patterns in the spectrograms when applying the filters 

(kernels). The first convolution has 32 filters, and the second 

has 64 filters, both of size (3x3) and two pooling layers. This 

layer reduces the dimensionality (the width and height of the 

features detected by the convolution), which helps to reduce 

the number of parameters and prevent overfitting. The pooling 

is performed with a size of (2x2), which divides by two the 

resolution of the images. 

The third layer, representing the flatten layer, takes the three-

dimensional features (width, height, and depth) and converts 

them into a single dimension (a vector), for later use in the 

fully connected layers. The next layer represents the dense 

layers. These are fully connected layers in which each node is 

connected to all the nodes of the previous layer. These layers 

perform the final classification using 128 neurons for the first 

layer and four neurons for the output.  

The last layer corresponds to the total number of classes 

we want to classify. In addition, an intermediate dropout layer 

between the dense layers allows us to regularize the model and 

avoid overfitting. During training, the Dropout layer randomly 

“turns off” a percentage of the neurons, which forces the 

model to be less dependent on specific features and more 

robust. 

We also used LeNet-5, whose architecture is described in 

Figure 10, to compare the results.  

 

 

 

 

 

 

LeNet-5 is composed of convolutional layers, 

subsampling layers and fully connected layers. To adapt the 

LeNet-5 architecture to our data, which has an image input of 

size 32x256 with 3 channels, we have made some adjustments 

to the layers. The first layer is a convolution that applies 6 5x5 

filters, followed by a pooling layer that reduces the 

dimensionality. Then, another convolution layer applies 16 

5x5 filters, followed by another pooling layer. After these 

operations, the output is flattened by a Flatten layer, 

transforming the feature maps into a one-dimensional vector. 

Next, the fully connected layer has 120 neurons, and Dropout 

is applied to avoid overfitting. Another dense layer with 84 

neurons also includes Dropout. Finally, the output layer has 4 

neurons with softmax activation to perform classification. [23] 

Finally, we use the VGG16 model; the architecture is 

described in Figure  11. 

 

 

 

 

 

 

 

 

 

 

The original structure of VGG16 is characterized by 

having a series of convolutional layers followed by max-

pooling operations, allowing the network to extract features at 

different levels of abstraction and culminating in fully 

connected layers to perform classification. [25] However, in 

this case, we have adapted the VGG16 architecture to our 

specific data (such as the input size that fits our 32x256 

dimension images with three channels) by removing the top 

layers, keeping only the pre-trained convolutional layers, and 

adding new dense layers to perform classification on our 

dataset. 

This comparison evaluates how each architecture 
performs when classifying our specific data. 

The comparison between these three approaches allows us 

to determine whether a pre-trained model such as VGG16 

offers significant advantages over a simpler model such as 

LeNet-5 or a proprietary model designed and trained directly 

on our data. In this way, we verify whether the spectrograms 

of the EMG signals effectively obtain a suitable classification 

for the four movements. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Simple CNN architecture 

Figure 10. LeNet-5 architecture. Extracted from [24] 

Figure 11. VGG16 architecture. Extracted from [24] 
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• Training 

 Before training the models, we prepare our data for input. 

Remembering that we have a total of 1000 data corresponding 

to the four movements, it is also essential to consider that in 

our case, we are using the information extracted from 8 

sensors, i.e., we have a total of 8 channels. So, in the first 

instance, we concatenate the spectrograms corresponding to 

each movement. 

 Figure 12 shows an example of concatenated 

spectrograms; the image corresponds to a movement related 

to a subject. 

 

 

 Once the concatenated spectrograms for each sensor for 

the different subjects and movements were obtained, models 

were trained. 

 It is important to note that when we concatenate the 

spectrograms, we obtain an input size of (32, 256, 3) due to 

the new image dimensions. 32 represents the height of the 

image, 256 represents the image’s width, and 3 represents the 

color channels. 

 During training, we employed regularization techniques 

such as Dropout, optimization with the Adam algorithm, and 

callbacks such as Early Stopping to avoid overfitting and 

ensure that the model converged efficiently to an optimal 

solution. In addition, all models were trained with 30 epochs 

to compare the epoch at which they no longer achieved 

improved metrics. The training, validation, and test sets were 

distributed to evaluate the overall model performance and 

ensure that the results represented the different movements. 

III. RESULTS 

Once the models have been trained, we compare the results 

obtained. 

In the first instance, we compared accuracy and loss during 

training. Comparing these metrics is essential because 

accuracy is more intuitive when evaluating the quality of the 

predictions. At the same time, loss is more beneficial to 

understanding how the model behaves during optimization.  

Figure 13 compares the accuracy of the three models. 

 

 

 

 

 

 

 

At the same time, in Figure 14, we compare the loss 

obtained during training for the three models. 

 

 
 

 

In the first comparison, LeNet-5 outperformed the other 

models. It obtained a total accuracy of 91%, compared to CNN 

Simple's 89% and VGG16's 86%. The latter had the worst 

results. On the other hand, for the case of loss during training, 

LeNet-5 also obtained better convergence between training 

and validation losses, which indicates that the model is 

generalizing better to the data without overfitting. 

In addition, the Precision, F1-Score, and Recall metrics of 

the three models were also considered for a more accurate 

comparison. These metrics are fundamental to evaluating the 

performance of the three models, avoiding mostly false 

positives or negatives. 

Table 2 shows the comparison of Precision, F1-Score, and 

Recall obtained by each of the models. 

  

Models 

Metric Simple CNN LeNet-5 VGG16 

F1-Score 93.47% 90.42% 85.93% 

Precision 93.63% 90.54% 85.95% 

Recall 93.50% 90.50% 86% 

Table 2. Comparison of F1-Score, Precision, and Recall obtained by each 

model. 

Better results were obtained using the simple CNN for the 

F1-Score, precision, and recall. It should be noted that the 

difference in the accuracy of the Simple CNN and the LeNet-

5 is only 2%. This means the CNN Simple will outperform the 

LeNet-5 model in accuracy with hyperparameter 

optimization. On the other hand, as in the previous case, the 

VGG16 model provided the worst metrics. 

Finally, to finish the comparison, in Figure 15, we analyze 

the confusion matrices obtained in each model, thus verifying 

the number of True Positives in our data classification. 

 

 

 

 

 

 

 

 

 

As expected by the accuracy obtained, the best-classified 

model was LeNet-5, with very little difference compared to 

the CNN Simple model. Conversely, the VGG16 model gave 

Figure 12. Example of spectrograms concatenation. 

Figure 13. Comparison of the accuracy obtained by the 3 models 

Figure 14. Comparison of the loss obtained by the 3 models 

Figure 15. Confusion matrix obtained for the 3 models. 
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us the worst metrics, significantly different from CNN Simple 

and LeNet-5. 

IV. DISCUSSION 

After evaluating the three models, LeNet-5, a simple 

CNN, and VGG16, the results showed that although all 

models could classify the movements accurately, their 

performance varied significantly depending on the metrics 

analyzed. 

LeNet-5 obtained the best accuracy and confusion matrix 

results, showing that this model could correctly identify most 

classes in the dataset. This architecture has effectively 

captured the features of the EMG signals, and, given its 

simplicity compared to other more complex models, it may 

have avoided overfitting, resulting in more stable and 

generalizable performance. In addition, the confusion matrix 

suggests that LeNet-5 handled the classification between 

classes well, with few confounding errors between categories. 

On the other hand, the simple CNN showed better metrics 

such as F1-score, precision, and recall. This may indicate that, 

while LeNet-5 was more accurate, the simple CNN was more 

efficient in correctly classifying the movements that belonged 

to each class (recall) and avoiding false positives (precision). 

So, as mentioned in the results section, the model may obtain 

better metrics by performing a hyperparameter optimization. 

Although VGG16 is a more complex model and generally 

effective in image classification tasks, it showed the worst 

accuracy and results for additional metrics. This could be due 

to several reasons. One of the problems to emphasize is the 

amount of data. However, based on the logic proposed in this 

research, methodologies such as data augmentation can be 

applied to take advantage of a more robust model such as 

VGG16. 

We concluded the work by proving that CNN-based 

models effectively classify muscle movements from 

spectrograms of EMG signals. CNN models are effective not 

only in classifying traditional images but also in classifying 

EMG signals represented as spectrograms. This reinforces the 

idea that spectrograms are a valuable tool for transforming 

temporal signals into a format that can be efficiently processed 

by convolutional neural networks, providing a perspective for 

the analysis of biomedical signals in classification 

applications. 
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