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Abstract—The design and experimental validation of bounded
and partially bounded nonlinear controllers addressing tracking
position tasks in DC motors are presented. Boundary properties
in the development of controllers are required features to meet
practical assumptions in the implementation stage. The general
structure of the proposed controllers is derived by applying
Sector Nonlinear control, and they stand out by their simplicity
and global stability properties. A set of particular bounded
and partially bounded nonlinear controllers exemplifies the
proposed framework. A low-cost, real-time embedded control
system attached to a DC motor is used to experimentally evaluate
the performance of the designed nonlinear controllers where
parameter uncertainty and nonlinear phenomena are present.

Index Terms—Bounded nonlinear controllers, Partially
bounded nonlinear controllers, DC Motors, Trajectory tracking
control, Experiments.

I. INTRODUCTION

The development of controllers applied to Direct Current
(DC) Motors is of great importance due to their wide range
of applications as actuators within engineering disciplines,
such as robotics, control systems, and electrical drives, to
mention a few. The analysis of their properties, and the
analysis of control tasks for complex robotic systems, have
been addressed thoroughly (see [1]–[8]). The model of a DC
motor, neglecting the armature inductance, is given by a linear
second-order dynamical system [9]–[11]. The approaches to
constructing controllers for linear systems are numerous, many
of them, also of a linear nature. However, in practice, most of
the systems are nonlinear, thus, relaxing assumptions about the
properties of the nonlinearities and uncertainties of the system,
as well as an assumed local stability, are standard practices
for constructing linear controllers [12]. Regardless of the
simplicity of the dynamics used to model DC motors, several
nonlinear phenomena are commonly found in them, such as
friction, hysteresis, and stiffness, to mention a few [13]–[15].
Another important aspect of the design of controllers for
physical systems is related to their operation capabilities, such

as input constraints. Thus, bounded control signals are required
to meet the maximum allowed values of the system. For linear
systems with constrained inputs, the design of robust con-
trollers using LMI tools is a frequent optimization approach,
where assumptions about the solvability of the problem must
be considered [16]. However, even after adequate tuning
of the controller, peak values in the control signal can be
present due to parametric uncertainties, disturbances, load vari-
ations, unmodeled dynamics, etc. Another common strategy
for bounding controllers is introducing a saturation function
that trims the control signal to maintain its magnitude between
admissible ranges [17]–[20]. Techniques such as backstepping,
composite nonlinear feedback control, sliding modes, barrier
functions, and uncertainty compensation have also been ap-
plied for the control of actuators with saturated inputs, [21]–
[27]. An additional challenge arises from introducing integral
actions in the controllers, which can originate wind-up when
the signals are saturated. This is a frequent issue with this
class of controllers, such as in PI (Proportional-Integral) and
PID (Proportional-Integral-Derivative) [28], hence, in these
cases, anti-windup compensators are commonly introduced
[29], [30]. The aim is to inhibit the growth of the integral
term by resetting it so that the control signal is constrained
between the predefined limits of the saturation function.

The design of nonlinear controllers with bounded and
partially bounded properties addressing the tracking control
task in DC motors is presented in this work. Experimental
validation demonstrates their capabilities when applied to a
DC motor, modeled as a linear system, but presenting common
nonlinear phenomena for these systems. In contrast with the
traditional saturated control approach, the presented design
does not consider using a saturating function that limits an
otherwise unrestricted control signal to keep it between the
prescribed bounds. In addition, it does not require formu-
lating and solving an optimization problem as in the LMI
approach. The proposed design considers the application of
BSN (Bounded Sector Nonlinear) control, where the explicit
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use of sector nonlinear functions allows the construction of
inherently bounded nonlinear controllers where the simplicity
of structure and global stability can be achieved [31]. The
following considerations are introduced for the experimental
setup: a) a particular set of nonlinear controllers are derived
from the proposed design, b) inverse dynamics are considered,
where a simple model identification is implemented, and c)
nonlinear phenomena that challenge the robustness of the
proposed controllers appear naturally in the DC motor used
for testing. The performance of the experimental results is
evaluated through integral indexes, the maximum values of the
control signal, and the maximum error during the steady-state
response.

This document is outlined as follows. The problem state-
ment for the tracking control task and the controller’s prop-
erties are declared in Section II. The general properties and
the synthesis of the proposed family of nonlinear controllers
to address the stated problem are presented in Section III.
In Section IV, the experimental setting and the obtained
results are analyzed. Finally, conclusions and future work are
discussed in Section V.

II. PROBLEM STATEMENT

A DC motor, neglecting the armature inductance, is modeled
by a second-order dynamic system, given by [9]–[11]

J q̈ +

[
fv +

KaKb

Ra

]
q̇ =

Ka

Ra
v, (1)

where q̇ and q̈ are the angular velocity and acceleration
variables, respectively; the solution of (1), denoted by q,
corresponds to the angular position of the shaft; v is the control
input, defined as the applied voltage; J is the rotor inertia;
fv is the coefficient of viscous friction; and, Ka,Kb, Ra are
electrical characteristics of the motor. All the parameters are
strictly positive constants.

Let a C2 trajectory, qd(t) ∈ R, represent a desired trajectory,
such that qd(t), q̇d(t), q̈d(t) ∈ L∞. Then, the objective of
this work is the construction and experimental validation of
nonlinear bounded and partially bounded controllers to solve
the tracking task defined by limt→∞ |qd(t)− q| = 0.

III. SYNTHESIS OF THE NONLINEAR CONTROLLERS

The constructed family of bounded nonlinear controllers
considers the applications of SN control where an explicit
summation of bounded sector nonlinear functions is applied.

A. Preliminaries

Let us consider the following results, taken from [31], to
build our particular set of nonlinear controllers.

Definition 1 (Bounded Sector Nonlinear (BSN) Function,
[31]). Consider a function ψ : R → R, and constants
l, m, γ ∈ R > 0. For all z ∈ R, function ψ belongs to sector
[l, m] if p = ψ(z) is contained between lz and mz. Note that
the above implies that zψ(z) ≥ 0. In addition, ψ is a function
bounded by a value γ if |ψ(z)| ≤ γ, for all z ∈ R.

Lemma 1 ( [31]). Let g(z) ∈ C1 be a bounded nonlinear
function, belonging to sector [0, α] and constrained by a
constant value γ ∈ R, such that it is strictly increasing under
the condition |g(z)| ≤ γ. Then, it is possible to build a positive
definite function G(z) > 0 based on the integral of g(z).

Theorem 2 ( [31]). Let gE(m1 z), gD(m3 ż) be BSN functions
with m1, m3 as positive constants. Then, the linear second-
order dynamical system z̈ + gE(m1 z) + gD(m3 ż) = 0 is
globally asymptotically stable.

Theorem 3 ( [31]). Let gE(m1 z), gI(m2 z), gD(m3 ż) be
BSN functions with m1, m2, m3 as positive constants, and
gI(m2 z) : G

I(m2 z) > 0 holds where GI(m2 z) is the time
integral of gI(m2 z). Then, the linear second-order dynamical
system z̈ + gE(m1 z) +

∫ t

0
gI(m2 z)dτ + gD(m3 ż) = 0 is

globally asymptotically stable.

The proof of Theorems 2 and 3 yields on the Lyapunov
function V (z, ż) = GE(m1 z) +

1
2 ż

2, where GE(m1 z) is a
positive definite function constructed by means of Lemma 1,
and the application of LaSalle’s invariance principle.

B. Tracking task in DC motors

To address the control tracking task in the DC motor, let
us consider the angular errors of the motor relating to the
desired trajectory, that is, q̃(t) = qd(t)− q, ˙̃q(t) = q̇d(t)− q̇,
¨̃q(t) = q̈d(t)− q̈. The construction of the bounded controllers
considers a general control structure with dynamic feedback
which takes the system (1) into a globally asymptotically
stable form, this is

v = vb = uinv + gE(m1 q̃) + gD(m3
˙̃q), (2)

uinv =
J Ra

Ka
q̈d −

Ra

Ka

[
fv +

KaKb

Ra

] (
q̇d − ˙̃q

)
, (3)

where gE(m1 q̃) and gD(m3
˙̃q) are BSN functions w.r.t. the

errors in angular position and velocity, respectively, satisfying
Definition 1.

Theorem 4. Let the system (1), with control input (2), (3),
where gE(m1 q̃), gD(m3

˙̃q) with m1, m3 > 0, belong to
the particular class of bounded nonlinear sector functions
satisfying Definition 1. Then, the closed-loop dynamics is
globally, asymptotically stable.

Proof. The closed-loop dynamics, obtained by substituting (2)
into the dynamics of the motor (1), are given as

¨̃q +
Ka

J Ra
gE(m1 q̃) +

Ka

J Ra
gD(m3

˙̃q) = 0. (4)

Then, proposing a modified Lyapunov candidate function as

V (q̃, ˙̃q) = GE(m1q̃) +
2 J Ram1

Ka

˙̃q2, (5)

yields V̇ (q̃, ˙̃q) = −m1
˙̃q gD(m3

˙̃q) < 0. Hence, since m1 > 0
by design, and due to the properties of the BSN function,
global asymptotic stability is concluded.
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The construction of partially bounded nonlinear controllers
stems from the introduction of an integral action; this is,

vp = vb +

∫ t

0

gI(m2 q̃(τ)) dτ, (6)

where vb is the bounded controller given in (2), while gI(m2 q̃)
is a function that satisfies Definition 1, as well.

Theorem 5. Consider the system (1) with the control input
augmented with integral action (6), where functions gE(m1 q̃),
gI(m2 q̃), gD(m3

˙̃q) with m1, m2, m3 > 0, belong to the
particular class of sector nonlinear functions satisfying Defini-
tion 1. Then, the closed-loop system is globally, asymptotically
stable.

Proof. Applying the same candidate Lyapunov function as in
Theorem 4 (i.e. (5)) to the closed-loop dynamics

¨̃q +
Ka

J Ra
gE(m1 q̃) +

Ka

J Ra

∫ t

0

gI(m2 q̃(τ)) dτ

+
Ka

J Ra
gD(m3

˙̃q) = 0,

yields

V̇ (q̃, ˙̃q) = −m1

(
˙̃q gD(m3

˙̃q) + ˙̃q

∫ t

0

gI(m2 q̃(τ)) dτ

)
= −m1

(
˙̃q gD(m3

˙̃q) +GI(m1 q̃(t)
)
< 0

s. t. gI(m2 q̃) : G
I(m2 q̃(t)) > 0.

Therefore, V̇ (q̃, ˙̃q) < 0, thus concluding global asymptotic
stability.

By Definition 1, the functions gE(m1 q̃), gD(m3
˙̃q), and the

function gI(m2 q̃) under the integral in (6), are bounded. The
compensation term uinv is bounded since it is obtained from
the feedback linearization of a physical system with operation
restrictions and given the established properties of the desired
trajectory.

The experimental validation of the nonlinear controllers
built for the tracking task is applied to a DC motor in the
form of a set of nonlinear controllers following the general
structures given by (2)-(3) and (6).

IV. EXPERIMENTAL EVALUATION

The experimental platform is shown in Figure 1 consisting
of a low-cost Uxcell 301 DC Gearmotor and a two-channel
Hall effect encoder with an 823.1 ppr resolution. It is con-
trolled in real-time through an embedded control board system
driven by an Arduino® Mega2560 board. Custom functions
for real-time execution have been implemented, instead of
the predefined ones offered by the Arduino® IDE. The only
external library used is for data logging into a MicroSD card.
The real-time embedded control system is configured with a
sample time of ts = 0.04096 seconds.

The DC motor’s parameters are unknown and Matlab®’s
System Identification toolbox was used to estimate them. To

Fig. 1: DC motor testbed with a real-time embedded control
system.

this end, a parameterized second-order dynamical system is
given as

a ẍ+ b ẋ+ c x = d u. (7)

has been used to fit real measurements. Here, a, b, c, and d are
positive constant values construed from the motor parameters.
The aim is to estimate the values of a ≈ J , b ≈ fv +

Ka Kb

Ra
,

c ≈ 0, and d ≈ Ka

Ra
, for the computation of a dynamic

feedback, uinv , as in (3).
Sinusoidal signals of 5 Volts of amplitude, at frequencies

of f = π
k Hz, k = 2, 4, .., 16, 18 have been applied during

100 seconds to obtain input-output measurements from the
DC motor. The best identification results produced a model
with a precision of 91.41%, according to Matlab®, concerning
the input-output measured data. The fitted model is given in
the form (7), with a = 1, b = 4.509, c = 6.087 × 10−11 and
d = 9.527. In addition, a ramp voltage signal has been applied
to observe nonlinear phenomena in the DC motor. In Figure 2,
we have 2a) and 2b) as examples of the obtained measurements
from the DC motor and the simulated dynamics from the
identified model (7); 2c) is a test applying a voltage ramp
signal; and 2d) is a phase portrait of angular position versus an-
gular velocity. As observed, the DC motor suffers from severe
nonlinear dynamics at low velocities; it appears to ‘stick’ until
a voltage threshold is crossed and then starts moving abruptly.
Identification and compensation of such nonlinearities is an
open issue in control systems and is out of the scope of this
work. However, the interested reader can refer to [32] and
[33] for details on compensation. The discrepancy between
the measurements and the estimated model can be explained
by the unmodeled dynamics, the parametric uncertainty, and
the nonlinear phenomena that appear naturally in DC motors.
The robustness of the proposed family of controllers will be
tested under these characteristics.

For all the controllers under study, the desired reference sig-
nal is defined as qd(t) = 10 cos

(
π
15 t

)
radians. For simplicity,

consider the same selected BSN function is applied for each
nonlinear controller in their corresponding terms. However, it
is possible to choose and combine any BSN function as long
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as (a) it fulfills Definition 1, and (b) the required condition for
the integral actions, as established in the stability analysis, is
held. The performance analysis is done through the numerical
computation of the discrete versions of MSE (Mean Square
Error), IAE (Integral Absolute Error), ITAE (Integral of the
Time Weighted Absolute), and ISTC (Integral of Square Time
Derivative of the Control Input Error) [34]. In addition, the
maximum voltage applied during the experiment, and the
maximum angular position error, q̃(t), during the steady-state
response, are calculated as well.

A. The bounded nonlinear controllers
For this setting, two bounded controllers are evaluated.

These are denoted as v1 and v2, and defined according to the
structure in (2), where the selected BSN functions are based
on quotients of a squared root, and exponential functions,
respectively. The proposed controllers are given as

v1 = ûinv + γE
m11 q̃√
m2

11 q̃
2 + 1

+ γD
m12

˙̃q√
m2

12
˙̃q2 + 1

(8)

v2 = ûinv + γE
em21 q̃ − 1

em21 q̃ + 1
+ γD

em22
˙̃q − 1

em22
˙̃q + 1

(9)

ûinv = 0.105 q̈d + 0.4732 q̇ + 6.3892× 10−12 q (10)

where ûinv is the computed feedback dynamics derived
from the model (7) with estimated parameters a = 1, b =
4.509, c = 6.087 × 10−11 and d = 9.527; γE and γD

are positive constants that define the bound values of each
BNS function. The selected bounds are γE = 5V and
γD = 2V , thus bringing the BSN to belong to sectors [0, 8.4]
and [0, 1.575], respectively. For each BSN function, the gain
values mij , i, j = 1, 2, are set to m11=1.8867 and m12=0.63,
for the case of the controller v1, and to m21=3.7333, and m22=
1.26, for the controller v2. These values are used to adjust the
slope of the BSN functions. The responses obtained from the
DC motor are shown in Figure 3. The performance analysis
is presented in Table I.

B. The partially bounded nonlinear controllers
Due to the condition gI(m2 q̃) : GI(m2 q̃(t)) > 0, estab-

lished by the stability proof of Theorem 5, the BSN function
for the integral action must be carefully chosen. The other
two BSN functions in the controller can be any BSN, as
long as they fulfill Definition 1. The two partially bounded
controllers under experimental evaluation, denoted as v3 and
v4, are defined as

v3 = ûinv + γE tanh(m31 q̃) + γI
∫ t

0

tanh(m32 q̃(τ))dτ

+ γD tanh(m33
˙̃q) (11)

v4 = ûinv +
2 γE

π
arctan(m41 q̃)+

2 γI

π

∫ t

0

arctan(m42 q̃(τ))dτ

+
2 γD

π
arctan(m43

˙̃q) (12)
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Fig. 2: Open loop input-output data. The system identification
process is shown for V = 5 sin(π2 t), 2a), for V = 5 sin(π9 t),
2b). The nonlinearity is observed when applying a ramp
voltage signal, 2c) and 2d).

where the estimated dynamic feedback ûinv is the same as
for the bounded case given in (10). The parameters γE , γI ,
and γD are positive constants that define the bound values of
each BSN function in the controller. The selected values for
these are given as γE = 4.5V , γI = 0.5V , and γD = 2V .
Then, under these conditions, the BSN functions belong
to sectors [0, 8.4], [0, 0.0315], and [0, 1.575], respectively.
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Fig. 3: Experimental results applying the Bounded Nonlinear
Controllers v1 and v2 given in (8) and (9), with dynamic
feedback (10).

The gain values for the slopes of the BSN functions are
set to m31=1.8667, m32= 0.06, m33=0.7875, m41=2.9322,
m42=0.0942, and m43=1.237. Figure 4 shows the experimental
results, while the performance comparison is summarized in
Table I.
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Fig. 4: Experimental results applying the partially Bounded
Nonlinear Controllers v3 and v4 given in (11) and (12), with
dynamic feedback (10).

C. Discussion

The experimental results demonstrate that all the proposed
nonlinear controllers solved the specified tracking task. Fur-
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TABLE I: Performance of the BSN controllers v1 and vv2 given in (8) and (9), and of the partially BSN controllers v3, v4 in
(11) and (12), all with an estimated dynamic feedback (10) computed according to the identified model (7).

Bounded nonlinear controllers Partially bounded nonlinear controllers

Performance v1 v2 v3 v4
index

MSE 1.4200 1.5086 1.4659 1.4037

IAE 0.2382 0.2476 0.2411 0.2477

ITAE 2.2851×103 2.0019×103 2.0183×103 2.6267×103

ISTC|t∈[10,60] 935.2120 976.7442 1052.3541 781.5058

max(|voltage|) 4.789 5.108 5.299 4.766

max(|q̃(t)|)|t∈[10,60] 0.657 0.617 0.530 0.964

thermore, they deal with model uncertainty and severe nonlin-
ear phenomena affecting the DC motor. Their most important
feature is their boundedness property which can be selected at
will by choosing a constant bound value for the BSN functions
that explicitly appear in the structure of the controller. The
maximum voltage applied by each evaluated controller is
shown in Table I (see rows max(|voltage|)). Regardless of the
initial error, none of the four evaluated controllers reaches
the bound established by the summation of the bounds of
each BSN function (i.e. 7 volts). All the controllers have been
tuned to provide similar slope values and bounds, thus, similar
performance is observed (see Table I). The difference between
their responses is due to the particularities of the selected
nonlinear functions. Notice from the figures 3 and 4 that the
position errors generated by each controller remain small; to
confirm this, the MSE index, which highly penalizes position
errors with large values, is employed (see Table I). The IAE
index shows the average of the absolute error concerning the
whole experiment is small. The ITAE index strongly penalizes
large errors occurring after, such as the one induced by the
nonlinearity; hence, its high value. The ISTC index has been
applied to the voltage variable in steady-state response; it
measures the oscillations in the control signal. Normally, the
value of this index reflects the oscillatory voltage required
to follow an oscillatory trajectory but, in our case, it mostly
reflects the effects of the nonlinearity (see the control signal
in Figures 3 and 4). The smoothest response is obtained with
the arctangent function in the partially bounded controller
(12). From all the selected BSN functions, the slowest rate of
convergence to the bound value corresponds to the arctangent
function.

The performance analysis shows a voltage peak in the low-
velocity range, where the nonlinearity appears. The exper-
iments suggest that this nonlinearity could result from the
combination of deadzone, backlash and/or hysteresis in the
DC motor. The compensation of these combined phenomena
is an open problem in control systems. This is perceived in the
experiments as a lack of motion in the motor’s angular position
q(t) when voltages are applied. In the graphs of position
(that is, in Figures 3a) and 4a), the nonlinear phenomenon
is evidenced by the flat section in the crests and valleys of

the trajectory. The maximum error in angular position q̃(t), in
the presence of the nonlinearity, is presented in Table I (see
rows max(|q̃(t)|)|t∈[10,60]); the evaluated period of 10 to 60
seconds was selected since the DC motor is in steady state
(that is, it has already reached the desired motion). When the
nonlinearity is present, the lack of motion in the shaft increases
the position error. Thus, the controller increases the voltage to
recover the desired trajectory; the control signal will continue
increasing until the voltage is enough to restart the motion.
This is a similar effect to that of integrator windup occurring
in saturated systems, and it is a major issue in control, since
as the error increases, the integral action rises (it ‘winds up’),
successively causing the control action to increase as well. In
our proposal, using an integral action of a bounded signal
concerning the position error sets the growth rate up to a
maximum constant value, regardless of an uncontrolled or
sudden increase in the position error. This helps to avoid the
wind-up problem and reduces overshoots in the response of
the DC motor, as observed in the experimental results shown
in Figures 3 and 4.

For the particular set of nonlinear controllers under study,
their stability can be analyzed through the construction of
a Lyapunov function (5), where a positive definite function
needs to be constructed for each particular BSN function,
as established in Lemma 1. Notice that this positive definite
function, GE(m1 q̃), is based on the time integral of the
corresponding BSN function. The positive definite functions
corresponding to each BSN are shown in Table II; these were
found through symbolic software. The sector of each BSN
function defines the section of the Cartesian plane where the
function resides, as established in Definition 1. The sector to
which they belong was algebraically computed as

[
0, γE m1

]
,[

0, γ
E m1

2

]
,
[
0, γE m1

]
, and

[
0, 2 γE m1

π

]
, for vi, i = 1, ..., 4,

respectively.

V. CONCLUSIONS AND FUTURE WORK

The outline for the design of bounded and partially bounded
nonlinear controllers is studied through an experimental eval-
uation in a DC motor affected by nonlinear phenomena.
Sector nonlinear control is applied to build a general structure
addressing the tracking task in DC motors, modeled by a
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TABLE II: BSN functions used in the experimentally evalu-
ated nonlinear controllers, and their corresponding construed
positive definite functions required by Lyapunov function (5)
for the closed-loop stability proof of each controller.

Controller BSN function Definite positive function
gE(m1 q̃) GE(m1 q̃)

v1 γE m1 q̃√
m2

1 q̃2+1

γE

m1

√
m2

1 q̃
2(t) + 1− γE

m1

v2 γE em1 q̃−1

em1 q̃+1
γE

(
2 ln(em1 q̃(t)+1)

m1
− q̃

)
− 2 γE

m1
ln(2)

v3 γE tanh(m1 q̃)
γE

m1
ln(cosh(m1 q̃(t)))

v4
2 γE

π
arctan(m1 q̃)

2γE

π
q̃(t) arctan(m1 q̃(t))

− γE

m1 π

(
ln(m2

1 q̃
2(t) + 1)

)

second-order linear dynamical system. BSN functions satis-
fying a particular definition are selected as an example set of
controllers, and to validate their performance by implementing
them in a DC motor testbed with real-time execution. A simple
model identification, performed with numerical software that
matches input-output measurements, is applied to estimate
feedback dynamics that partially compensate for the dynamics
of the DC motor. The effectiveness of the controllers under
study is evidenced by their exhibited robustness under the
uncertainty in the estimated model and unidentified complex
nonlinear phenomena. The design of a tuning method, using
observers, and implementing model identification techniques
with better accuracy are proposed as future work.
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