
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

In Search of Efficient Hardware Designs: A Multi-

Objective Journey through MLIR

Joel A. Quevedo

Doctorado en Ciencias de la Ingeniería

Instituto Tecnológico de Tijuana

Tijuana, México

joel.quevedo201@tectijuana.edu.mx

Yazmin Maldonado

Posgrado en Ciencias de la Ingeniería

Instituto Tecnológico de Tijuana

Tijuana, México

yaz.maldonado@tectijuana.edu.mx

Abstract— Field Programmable Gate Arrays are pivotal for

digital system implementation, but their inherent complexity

has prompted the search for user-friendly design approaches.

While Hardware Description Languages like VHDL and

Verilog provide higher-level abstractions, they demand

substantial hardware expertise and can entail significant design

costs. High-Level Synthesis emerges as a promising solution,

bridging this gap by translating high-level behavioral

descriptions, such as those in C/C++ or Python, into hardware

designs. This research proposes a novel approach to High-Level

Synthesis design flow with the goal of reducing the designer's

exposure to hardware aspects. Taking advantage of a novel

compiler infrastructure known as Multi-Level Intermediate

Representation our proposed methodology enhances scalability

and reusability. In the current stage of our ongoing work, we

focus on parameter estimation for area, delay, and power, along

with their assignment to the CDFG. Subsequent phases involve

the application of Multi-Objective Evolutionary Algorithms to

optimize the CDFG, resulting in an optimized graph. Ultimately,

the CDFG will be transformed into VHDL code and

implemented using popular tools like AMD-Xilinx Vivado, Intel

Quartus, or among others. The flexibility of the tool, devoid of

technology or vendor specificity, highlights the adaptability and

appeal of our approach. This research has the potential to

streamline HLS processes, making hardware design more

accessible and versatile, thereby benefiting a wide range of

applications and technologies.

Keywords—High-Level Synthesis, MLIR, Multi-Objective

Optimization, Field Programmable Gate Array, Hardware

Description Languages, Intermediate Representations.

I. INTRODUCTION

The advantages offered by Field Programmable Gate
Arrays (FPGAs) for implementing digital systems have fueled
a search for alternatives that can simplify the design process,
making this technology accessible to a broader spectrum of
research fields. FPGAs enable the implementation of
synchronous designs, ensuring that instructions remain
synchronized with the system's clock. Furthermore, these
devices possess the capability to perform tasks in parallel,
executing processes concurrently. However, all those
advantages have a huge limitation; Hardware Description
Languages (HDLs).

The most commonly used HDLs include VHDL and
Verilog. These languages enable users to design and debug
digital systems at a higher level of abstraction than describing
the entire circuit manually on schematic. However, designing
a high-quality digital circuit requires a deep understanding of
hardware design, alongside careful consideration of numerous
factors in the design exploration process, which can
potentially become cost-prohibitive [1]. An attractive solution
to this problem is High-Level Synthesis (HLS) which
facilitates the generation of hardware designs from behavioral
descriptions written in high-level languages like C/C++ or
Python. This methodology offers many advantages in the

hardware design process, including reduced development time
and more convenient methods for verification and debugging.
Additionally, it extends an invitation to software designers to
explore the field of hardware design. However, HLS has
limitations. Designers need to consider hardware-specific
factors, such as timing and resources, to get the best results.
Moreover, this design process often does not produce
implementations as efficient as those created manually [2][3].

Software compilation and HLS both aim for similar
optimization goals, such as removing unnecessary code,
simplifying constants, and optimizing loops, just to name a
few. Because of this, HLS tools often use structures from
software compilation to make these improvements. A widely
used tool for this purpose is the Low-Level Virtual Machine
(LLVM) project [4], which serves as an open-source compiler
infrastructure. Most HLS tools use LLVM as a front-end to
generate code that works independently across different
targets [5].

Despite its popularity, LLVM IR (Intermediate
Representation) has a limitation, it operates at a single
abstraction level to interface with the system. This limitation
becomes apparent when dealing with specific domain-related
problems, as many of these problems are better addressed
using different levels of abstraction. To overcome this
limitation, several programming languages such as Swift,
Rust, and Julia have developed their own IRs to focus on
domain-specific problems and improve the implementation
process. In response to these challenges in programing
language design and implementation, is proposed the Multi-
Level Intermediate Representation (MLIR) [6]. MLIR is a
compilation framework that supports multiple levels of
functional and representational hierarchy. Its ability to model
various levels of abstraction provides compilers with a
pathway to create domain-specific IRs.

Currently, there are many HLS tools available, both
commercial and academic, such as, Vitis HLS [7], Intel HLS
[8] and BAMBU [9]. However, to generate a high-efficient
digital circuit, the user still needing a deep knowledge of
hardware to indicate the tool through directives the
optimizations they need to achieve their design goal [2]. The
HLS process often operates within a framework called Design
Space Exploration (DSE). This framework assists in selecting
the best design that aligns with project goals by employing
techniques such as scheduling, allocation, and binding. It is
important to note that these optimization techniques
inherently involve multiple objectives, with several functions
to be improved simultaneously [10][11]. The most common
objectives that these tools seek to minimize are area, delay,
and power consumption.

In the following sections, we will provide detailed
information about the current state of HLS tools, with a focus
on features relevant to our work, including input/output
languages and IR.

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 117

dativ
Rectángulo

dativ
Rectángulo

 The limitations involving the HLS process, including the
requirement for solid hardware expertise, the diverse
approaches to solving the same problem, and the necessity to
perform multi-objective optimizations, have motivated the
exploration of alternatives methods to enrich this process. To
mitigate these limitations, we propose the utilization of Multi-
Objective Evolutionary Algorithms (MOEAs) to optimize a
CDFG extracted from the MLIR compiler infrastructure.
Furthermore, extracting specific information from MLIR's
dialects contributes to enhancing the quality of the CDFG.

This study aims to introduce a novel approach to tackle
some of the existing challenges in the field of HLS. We
propose an end-to-end design flow, starting from a high-level
programming language, to HDL code. The HDL code as
output will be optimized by the MOEA during the process,
considering three objective functions (delay, area, and power).

This paper is organized as follows: Section II presents a
theoretical background related to High-Level Synthesis,
LLVM/MLIR and the role of Multi-Objective Evolutionary
Algorithms in this process. Section III presents a general
overview of the current approaches and design methodologies
presented in the literature. Section IV presents the details of
the proposed methodology and the current stage of the project.
Finally, Section V presents the conclusion and future work.

II. THEORETICAL BACKGROUND

This section aims to provide a theoretical background
related to the process of High-Level Synthesis, including the
infrastructure commonly used in these tools. Furthermore, it
offers a comprehensive overview of the MLIR project and
Multi-Objective Evolutionary Algorithms, both of which play
key roles in the context of this work.

A. High-Level Synthesis

In short terms, HLS offers the capability to translate a
behavioral description, typically written in a high-level
programming language like C/C++, SystemC, or Python, into
a hardware description that retains equivalent semantics. A
general overview of the HLS design process is shown in Fig.
1, the initial step involves the compilation of the high-level
language description into an intermediate representation,
which encapsulates critical information regarding data
dependencies and control flow relationships among
operations. Many HLS tools leverage different techniques for
representing and analyzing the input code, such as utilizing the
abstract syntax tree (AST) of C/C++ code, employing a
traditional software compiler IR, or constructing a
control/data flowgraph (CDFG) [12][13]. Subsequently, the
IR undergoes a series of critical processes: scheduling,
allocation, and binding.

• Scheduling: Determines how individual operations are
scheduled across clock cycles, establishing the
temporal order in which operations will be executed.

• Allocation: Selects the number and type of hardware
resources, including Functional Units (FU),
connectivity components, and storage elements,
necessary to meet design constraints. These
components are typically chosen from a hardware
resource library that includes characteristics such as
area, delay, and power consumption.

• Binding: Dictates how each variable is linked to a
specific FU in each clock cycle.

Fig. 1. General diagram of the HLS process.

The DSE framework helps the HLS tool identify the
optimal design by exploring various combinations of
scheduling, allocation, and binding decisions. Finally,
considering the outcomes of these preceding tasks, is
generated a Register-Transfer Level (RTL) description
[11][12]. This RTL description serves as a lower-level
representation of the hardware design, ready for further
synthesis and implementation. Notice that the IR section is
highlighted (Fig. 1), as its structure has a direct and significant
impact on the capabilities of the HLS tool. In essence, the
more robust and powerful the IR structure, the more proficient
the HLS tool becomes in effectively translating the input code
and executing optimizations [14].

B. Control and Data Flow Graph

Data dependencies can be effectively illustrated using a
data flow graph (DFG) where each node corresponds to an
operation, and the connections between nodes represent input,
output, and temporary variables. However, this structure
models only data dependencies and no the control
dependencies. This limits the use of DFG representation to a
few applications. It is possible to extend the traditional DFG
model by adding control dependencies and giving as result a
control and data flow graph (CDFG). A CDFG is a directed
graph in which the edges represent the control flow. The nodes
in a CDFG are commonly referred to as basic blocks (BB). A
BB is itself a DFG, a sequence of statements that contain no
branches or internal entrance or exit points. A CDFG exhibits
data dependencies inside BBs and captures the control flow
between them [12][15]. As an example, in Fig. 2, is presented
the CDFG of an if-else sentence. At first, the code will
evaluate the condition (green node), considered as an entry
point, if the condition is true the code will add 20 to a variable,
if the condition is false, will add the variable b instead (blue
nodes). At the end, it returns the result x value (yellow node).

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 118

Fig. 2. Example of a CDFG for an if-else sentence.

C. LLVM/MLIR Compiler infrastructure

As the MLIR project was inspired by LLVM, we consider
that a brief overview of how LLVM works, will help the
reader to visualize the advantages.

LLVM [4] is a constantly growing project, that has been
widely used for implementation of programming languages,
and has become an essential resource for compiler research.
In Fig. 3, is shown a basic example of how a C function can
be transformed into a LLVM IR. This IR is composed by a
control-flow graph (CFG) of labeled basic blocks and
branches as CFG edges. It also contains the so called φ-
functions which purpose is to select the control-flow
dependent values, defined in predecessor basic blocks. It's
important to note that within each basic block, there exists an
internally constructed DFG including the operations and
values defined and referenced. In order to illustrate the
relationship between the CDFG (Fig. 2) and the LLVM IR,
the color of the nodes corresponds to the sections marked by
colored lines.

LLVM IR is a static single assignment (SSA) IR, which
means that each value, known as SSA operand, is assigned
exactly once. It is important to notice that, during the lowering
from a high-level AST to LLVM IR, certain information from
the source code will inevitably be lost [1].

Fig. 3. Example of a long function lowered to LLVM IR through Clang.

Similar to LLVM, MLIR [6] includes a SSA style IR. This
infrastructure, allows the user to capture domain-specific IRs
into a Dialect. These dialects are collection of operations,
attributes, and types that describe a particular domain. MLIR
offers a versatile platform with both predefined dialects for
common functionalities and an open framework that
empowers users to create custom dialects. The shared
semantics across all dialects are defined by the infrastructure
itself, utilizes SSA values. In MLIR a sequential list of
operations without control flow is defined as a BB, and a CFG
of blocks is structured within a Region. Moreover, operations
have the capability to include regions, enabling the
representation of arbitrary design hierarchies.

 In Fig. 4, we observe two different representations of the
same f function within MLIR. Initially, the function is
translated into SCF dialect. In this representation, the structure
defines the constant (%c20_i64), followed by the

computation of the as a Boolean value (%0). Then, it enters to

scf.if operation, where the addition of the arguments is

evaluated accordingly. Next, one can further lower the SCF
dialect to Standard dialect, with blocks being used the same as
BB in LLVM IR, where branches (br) are used for control

flow. As same as previous figures, the colored lines
correspond to the color in CDFG nodes.

Fig. 4. Example of a long function lowered to MLIR Standard through

Polygeist [39] and MLIR.

D. Multi-Objective Optimization in HLS

In HLS the DSE can be classified as a multi-objective
optimization problem, since the main goal is to minimize a set
of conflicting design parameters [16]. As mentioned earlier,
there are many possible optimizations during the process
scheduling, allocation, and binding. These optimizations
involve conflicting objective functions, by this reason, the

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 119

problem typically needs the application of a multi-objective
optimization algorithms (MOAs). MOAs maintain a trade-off
between conflicting metrics. The literature has reported the
optimization of many objective functions during the HLS
process, such as, delay, area, power, wirelength, digital noise,
reliability, temperature, and security [11]. This work is mainly
interested in the simultaneous optimization of:

• Delay: Also called, timing, latency, or performance
correspond to the total number of time steps or clock
cycles.

• Area: Total number of hardware resources necessary
to meet design constraints.

• Power: Total power consumption.

All of these objective functions, are expected to be
minimized by the algorithm.

Multi-Objective Evolutionary Algorithms (MOEAs) have
proven to be valuable tools for the DSE in HLS, helping the
designers to select the design that aligns the best with project
requirements. In the literature, many authors explore the
integration of MOEAs in the HLS process [10][17][18].
However, in [19], is conducted a comparative analysis using
quality indicators to evaluate the performance of some
algorithms, including NSGA-II (Nondominated Sorting
Genetic Algorithm II) [20], NSGA-III (Nondominated Sorting
Genetic Algorithm III) [21] and SPEA2 (Strength Pareto
Evolutionary Algorithm 2) [22]. These studies collectively
demonstrate the feasibility and effectiveness of implementing
MOEAs in the HLS process.

III. RELATED WORK

In the literature, various approaches and design
methodologies have been documented, all sharing a common
goal: addressing the limitations inherent in current HLS
processes.

Over the years, many HLS tools have been implemented
[23]. Each of them offering distinct features, including
variations in input/output languages, intermediate
representations, their own internal optimizations, or
specialization for specific devices or technologies. Also, these
tools can be commercial or academic. Their general
information is listed in Table I and Table II accordingly.

TABLE I. HLS ACADEMIC TOOLS.

Tool Name Input

Language
Output Language IR

LegUp [24] C Verilog
DFG, CDFG,

LLVM

BAMBU [9] C Verilog/VHDL
CDFG, Call

Graph, LLVM

Dynamatic [25] C/C++ VHDL CDFG, LLVM

DWARV [26] Subset C VHDL CDFG

GAUT [27] C/C++ VHDL CDFG

TABLE II. HLS COMERCIAL TOOLS.

Tool Name Input Language Output Language

Vitis HLSa [7] C/C++, SystemC Verilog, VHDL

Intel HLS [8] C/C++
Verilog, VHDL,

System Verilog

Smart HLS [28] C/C++ Verilog

Tool Name Input Language Output Language

CyberWorkBench [29] BDL Verilog, VHDL

Catapult-C [30] C/C++, SystemC Verilog, VHDL

Stratus [31] C/C++, SystemC RTL

Bluespec [32] BSV Verilog

Synphony [33] M-language RTL, C-model

MaxCompiler [34] MaxJ RTL

a. Uses LLVM as an IR

As shown in the tables, most of the tools primarily use
C/C++ languages to describe the input program. Additionally,
Verilog and VHDL are equally popular choices. Academic
tools have limited information available, creating a barrier to
identify their components, such as, the IR and its properties.
However, the HLS community has introduced innovative
design flows that incorporate high-level languages like Python
[35][36] and Julia [37]. Some alternative approaches leverage
the MLIR infrastructure to facilitate the transformation of
code into an HDL [1][14][38].

Despite the variety of design flows, designers are still
required to address hardware-specific considerations.
Furthermore, for our knowledge base, none of these
approaches prioritize the concurrent optimization of area,
latency, and power.

IV. PROPOSED METHODOLOGY

In order to contribute with an alternative for HLS process,
we propose a design flow, which includes in its middle-end a
MLIR and a CDFG that will be optimized by a selected
MOEA. This aims to mitigate the limitations addressed in the
Fig. 5, and reduce the hardware knowledge needed to achieve
an optimal solution of a digital circuit. Also, the utilization of
a novel compiler infrastructure like MLIR, offers an
interesting entry point to explore and research their effect in
the application of multi-objective optimization in HLS.

A specific diagram of the proposed design flow is presented
in Fig. 6. As a front-end, Polygeist [39] is a suitable option to
transform C/C++ input code to MLIR. At this step, we propose
to extract a CDFG from MLIR which nodes must contain the
information related to delay, area, and power objective
functions. These parameters, can be estimated as described in
[40][41]. Once the CDFG is constructed, a multi-objective
optimization will be performed by the selected MOEA
(SPEA2, NSGA-II, NSGA-III). Finally, the optimized

Fig. 5. Illustrative diagram addressing the problem under study.

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 120

 CDFG will be translated to a VHDL code with equivalent
semantics.

Fig. 6. Diagram of the proposed design flow.

At this stage of the project, we are working on the
construction of the CDFG with the attributes corresponding to
the objective functions to minimize (area, delay and power).
Further, we will perform experiments applying the MOEAs to
the CDFG mentioned before. Once this step is validated, we
will continue with the translation of the CDFG into the VHDL
code. The generated VHDL code must be ready to synthesize
and implement into an FPGA using a platform like Xilinx
Vivado [7] or Intel Quartus[8].

We are particularly interested in a software tool called
“VHDL by MOEA” [42], which focuses on performing multi-
objective optimizations using a DFG extracted from input C
code. This tool offers several advantages, including the
visualization of the IR and the ability for users to select a
MOEA along with its parameters, such as population size,
generations, crossover, and mutation probability. Also, it
produces optimized VHDL code as its output. However,
“VHDL by MOEA” currently has limitations as it utilizes a
DFG as its IR, which restricts the allowed C instructions. To
address this limitation and enable more complex designs, we
propose upgrading the tool to support a CDFG by leveraging
the benefits of MLIR. This enhancement will make the tool
more robust and versatile, allowing it to handle a wider variety
of C code.

We believe that integrating our proposed design flow with
“VHDL by MOEA” presents an immediate and highly
advantageous application of our research. This integration will
significantly augment the tool's capabilities, opening the door
to a more extensive range of code compatibility, aligning well
with the goals of our research.

V. CONCLUSION

In this paper, we have presented a novel HLS design flow
proposal aimed at reducing the designer's exposure to
hardware aspects, effectively delegating these responsibilities
to the optimization algorithm. The integration of MLIR
compiler infrastructure adds significant flexibility to explore
various design flows. For instance, it allows the
implementation of a front-end that can translate from other
high-level languages, such as Python (see nelli [43]), to an
MLIR dialect, thus providing access to the methodology
proposed in this work. Additionally, the back-end can be
modified to convert the optimized CDFG into HDLs like
Verilog or SystemVerilog, offering versatility in
implementing digital circuits.

As previously mentioned, this work is still in progress. The
current stage involves parameter estimation for area, delay,
and power, along with their assignment to the CDFG.
Following this, we will proceed with the application of
MOEAs to optimize the CDFG, resulting in an optimized
graph. Ultimately, the CDFG will be translated into VHDL

code and implemented using external tools such as Xilinx
Vivado or Intel Quartus. The ability to select the
implementation tool, which is not tied to any specific
technology, vendor, or device, highlights the attractiveness of
our proposed approach.

HLS has proven successful in domains such as deep
learning, video transcoding, graph processing, and
bioinformatics [44]. These are areas where our proposed
design flow can provide an interesting solution for hardware
implementation. Moreover, we expect that the methodology
presented in this work serve as a base for future research in the
HLS flow and encourage the community to explore new
optimization techniques or the integration and evaluation of
other multi-objective evolutionary algorithms.

This ongoing research holds the potential to significantly
enhance the HLS process and reduce the complexity
traditionally associated with hardware design, making it more
accessible and versatile for a broader range of applications and
technologies.

ACKNOWLEDGMENT

This work was supported by CONAHCYT scholarship
1014860, and the Tecnológico Nacional de México with de
project 17615.23-P.

REFERENCES

[1] Morten Borup Petersen. “A Dynamically Scheduled HLS Flow in
MLIR”. Masters Thesis. École polytechnique fédérale de Lausanne,
2022.

[2] L. Huang, D.-L. Li, K.-P. Wang, T. Gao, and A. Tavares, “A Survey
on Performance Optimization of High-Level Synthesis Tools,” J.
Comput. Sci. Technol., vol. 35, no. 3, pp. 697–720, May 2020, doi:
10.1007/s11390-020-9414-8.

[3] A. S. Canas Ferreira, “Restructuring Software Code for High-Level
Synthesis Using a Graph-based Approach Targeting FPGAs,”
Universidade Do Porto, 2018.

[4] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., Mar. 2004, pp.
75–86. doi: 10.1109/CGO.2004.1281665.

[5] S. Ravi and M. Joseph, “Open source HLS tools: A stepping stone for
modern electronic CAD,” in 2016 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC),
Chennai: IEEE, Dec. 2016, pp. 1–8. doi:
10.1109/ICCIC.2016.7919615.

[6] C. Lattner et al., “MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation,” in 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), Seoul, Korea (South):
IEEE, Feb. 2021, pp. 2–14. doi: 10.1109/CGO51591.2021.9370308.

[7] AMD/Xilinx. Vitis HLS. Available online:
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.

[8] Intel. Intel HLS Compiler. Available online:
https://www.intel.com/content/www/us/en/docs/programmable/68345
6/21-4/pro-edition-user-guide.html.

[9] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high
level synthesis of memory-intensive applications,” in 2013 23rd
International Conference on Field programmable Logic and
Applications, Sep. 2013, pp. 1–4. doi: 10.1109/FPL.2013.6645550.

[10] M. C. Bhuvaneswari, Application of evolutionary algorithms for multi-
objective optimization in VLSI and embedded systems. Springer, 2014.

[11] D. Reyes Fernandez de Bulnes, Y. Maldonado, and L. Trujillo,
“Development of Multiobjective High-Level Synthesis for FPGAs,”
Scientific Programming, vol. 2020, pp. 1–25, Jun. 2020, doi:
10.1155/2020/7095048.

[12] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An Introduction
to High-Level Synthesis,” IEEE Des. Test. Comput., vol. 26, no. 4, pp.
8–17, Jul. 2009, doi: 10.1109/MDT.2009.69.

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 121

https://doi.org/10.1007/s11390-020-9414-8
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/ICCIC.2016.7919615
https://doi.org/10.1109/CGO51591.2021.9370308
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://www.intel.com/content/www/us/en/docs/programmable/683456/21-4/pro-edition-user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683456/21-4/pro-edition-user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683456/21-4/pro-edition-user-guide.html
https://doi.org/10.1109/FPL.2013.6645550
https://doi.org/10.1155/2020/7095048
https://doi.org/10.1109/MDT.2009.69

[13] H. Ye et al., “ScaleHLS: A New Scalable High-Level Synthesis
Framework on Multi-Level Intermediate Representation.” arXiv, Dec.
22, 2021. Accessed: Sep. 21, 2023. [Online]. Available:
http://arxiv.org/abs/2107.11673

[14] M. Urbach and M. B. Petersen, “HLS from PyTorch to System Verilog
with MLIR and CIRCT”. LATTE’22, March. 2022.

[15] J. Cheng, L. Josipovic, G. A. Constantinides, P. Ienne, and J.
Wickerson, “Combining Dynamic & Static Scheduling in High-level
Synthesis,” pp. 288–298, Feb. 2020, doi: 10.1145/3373087.3375297.

[16] B. C. Schafer and Z. Wang, “High-Level Synthesis Design Space
Exploration: Past, Present, and Future,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 10, pp. 2628–2639, Oct. 2020, doi: 10.1109/TCAD.2019.2943570.

[17] A. Sengupta and R. Sedaghat, “Integrated scheduling, allocation and
binding in High Level Synthesis using multi structure genetic
algorithm based design space exploration,” in 2011 12th International
Symposium on Quality Electronic Design, Mar. 2011, pp. 1–9. doi:
10.1109/ISQED.2011.5770772.

[18] B. C. Schafer and K. Wakabayashi, “Machine learning predictive
modelling high-level synthesis design space exploration,” IET
Computers & Digital Techniques, vol. 6, no. 3, pp. 153–159, May 2012,
doi: 10.1049/iet-cdt.2011.0115.

[19] D. R. Fernández de Bulnes and Y. Maldonado, “Comparación de
Algoritmos Evolutivos Multi-Objetivo para Síntesis de Alto Nivel en
dispositivos FPGA,” CyS, vol. 22, no. 2, Jul. 2018, doi: 10.13053/cys-
22-2-2946.

[20] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-objective
Optimization: NSGA-II,” in Parallel Problem Solving from Nature
PPSN VI, M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.
Merelo, and H.-P. Schwefel, Eds., in Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2000, pp. 849–858. doi:
10.1007/3-540-45356-3_83.

[21] H. Jain and K. Deb, “An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive
Approach,” IEEE Transactions on Evolutionary Computation, vol. 18,
no. 4, pp. 602–622, Aug. 2014, doi: 10.1109/TEVC.2013.2281534.

[22] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm,” 2001. doi: 10.3929/ETHZ-A-
004284029.

[23] R. Nane et al., “A Survey and Evaluation of FPGA High-Level
Synthesis Tools,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, Oct.
2016, doi: 10.1109/TCAD.2015.2513673.

[24] Andrew Canis et al. “LegUp: An open-source high-level synthesis tool
for FPGA-based processor/accelerator systems”. In: ACM
Transactions on Embedded Computing Systems (TECS) 13.2 (2013),
pp. 1–27.

[25] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. “Invited tutorial:
Dynamatic: From C/C++ to dynamically scheduled circuits”. In:
Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 2020, pp. 1–10.

[26] Razvan Nane et al. “DWARV 2.0: A CoSy-based C-to-VHDL
hardware compiler”. In: 22nd International Conference on Field

Programmable Logic and Applications (FPL). IEEE. 2012, pp. 619–
622.

[27] Philippe Coussy et al. “GAUT: A high-level synthesis tool for DSP
applications”. In: High-Level Synthesis. Springer, 2008, pp. 147–169.

[28] Microchip. Smart HLS. Available online:
https://microchiptech.github.io/fpga-hls-docs/.

[29] NEC. CyberWorkBench. Available online:
https://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_technic
al.pdf.

[30] Siemens. Catapult C++/SystemC Synthesis. Available online:
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-
synthesis/hls/c-cplus/.

[31] Cadence. Stratus HLS. Available online:
https://www.cadence.com/ko_KR/home/tools/digital-design-and-
signoff/synthesis/stratus-high-level-synthesis.html.

[32] Bluespec. Bluespec Compiler. Disponible en: https://bluespec.com/.

[33] Synopsis. Synphony HLS. Available online:
https://news.synopsys.com/index.php?s=20295&item=123096.

[34] Maxeler. MaxCompiler. Available online:
https://www.maxeler.com/media/documents/MaxelerWhitePaperProg
ramming.pdf.

[35] MyVHDL. Available online: https://www.myhdl.org/.

[36] PyVHDL. Available online: https://pyvhdl-docs.readthedocs.io/.

[37] B. Biggs, I. McInerney, E. C. Kerrigan, and G. A. Constantinides,
“High-level Synthesis using the Julia Language.” arXiv, Feb. 17, 2022.
Accessed: Sep. 21, 2023. [Online]. Available:
http://arxiv.org/abs/2201.11522

[38] CIRCT. [n.d.]. Circuit IR Compilers and Tools. Online.
https://circt.llvm.org

[39] W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist: Raising
C to Polyhedral MLIR,” in 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT), Sep. 2021,
pp. 45–59. doi: 10.1109/PACT52795.2021.00011.

[40] D. S. H. Ram, M. C. Bhuvaneswari, and S. M. Logesh, “A Novel
Evolutionary Technique for Multi-objective Power, Area and Delay
Optimization in High Level Synthesis of Datapaths,” in 2011 IEEE
Computer Society Annual Symposium on VLSI, Jul. 2011, pp. 290–295.
doi: 10.1109/ISVLSI.2011.55.

[41] E. Kursun, R. Mukherjee, and S. O. Memik, “Early Quality Assessment
for Low Power Behavioral Synthesis,” Journal of Low Power
Electronics, vol. 1, no. 3, pp. 273–285, Dec. 2005, doi:
10.1166/jolpe.2005.028.

[42] Darian Reyes Fernández de Bulnes. “Optimización de recursos para
plataformas reconfigurables mediante metaheurísticas”. PhD thesis.
Instituto Tecnológico de Tijuana, 2019. VHDL by MOEA available:
http://201.174.122.25/vhdlbymoea/

[43] M. Levental, A. Kamatar, R. Chard, K. Chard, and I. Foster, “nelli: a
lightweight frontend for MLIR.” arXiv, Aug. 14, 2023. Accessed: Sep.
22, 2023. [Online]. Available: http://arxiv.org/abs/2307.16080

[44] J. Cong et al., “FPGA HLS Today: Successes, Challenges, and
Opportunities,” ACM Trans. Reconfigurable Technol. Syst., vol. 15,
no. 4, p. 51:1-51:42, Aug. 2022, doi: 10.1145/3530775.

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 122

http://arxiv.org/abs/2107.11673
https://doi.org/10.1145/3373087.3375297
https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1109/ISQED.2011.5770772
https://doi.org/10.1049/iet-cdt.2011.0115
https://doi.org/10.13053/cys-22-2-2946
https://doi.org/10.13053/cys-22-2-2946
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1109/TEVC.2013.2281534
https://doi.org/10.3929/ETHZ-A-004284029
https://doi.org/10.3929/ETHZ-A-004284029
https://doi.org/10.1109/TCAD.2015.2513673
https://microchiptech.github.io/fpga-hls-docs/
https://microchiptech.github.io/fpga-hls-docs/
https://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_technical.pdf
https://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_technical.pdf
https://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_technical.pdf
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/ko_KR/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://bluespec.com/
https://bluespec.com/
https://news.synopsys.com/index.php?s=20295&item=123096
https://news.synopsys.com/index.php?s=20295&item=123096
https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperProgramming.pdf
https://www.myhdl.org/
https://pyvhdl-docs.readthedocs.io/
http://arxiv.org/abs/2201.11522
https://circt.llvm.org/
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1109/ISVLSI.2011.55
https://doi.org/10.1166/jolpe.2005.028
http://201.174.122.25/vhdlbymoea/
http://arxiv.org/abs/2307.16080

