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Abstract— Field Programmable Gate Arrays are pivotal for 

digital system implementation, but their inherent complexity 

has prompted the search for user-friendly design approaches. 

While Hardware Description Languages like VHDL and 

Verilog provide higher-level abstractions, they demand 

substantial hardware expertise and can entail significant design 

costs. High-Level Synthesis emerges as a promising solution, 

bridging this gap by translating high-level behavioral 

descriptions, such as those in C/C++ or Python, into hardware 

designs.  This research proposes a novel approach to High-Level 

Synthesis design flow with the goal of reducing the designer's 

exposure to hardware aspects. Taking advantage of a novel 

compiler infrastructure known as Multi-Level Intermediate 

Representation our proposed methodology enhances scalability 

and reusability. In the current stage of our ongoing work, we 

focus on parameter estimation for area, delay, and power, along 

with their assignment to the CDFG. Subsequent phases involve 

the application of Multi-Objective Evolutionary Algorithms to 

optimize the CDFG, resulting in an optimized graph. Ultimately, 

the CDFG will be transformed into VHDL code and 

implemented using popular tools like AMD-Xilinx Vivado, Intel 

Quartus, or among others. The flexibility of the tool, devoid of 

technology or vendor specificity, highlights the adaptability and 

appeal of our approach. This research has the potential to 

streamline HLS processes, making hardware design more 

accessible and versatile, thereby benefiting a wide range of 

applications and technologies. 

Keywords—High-Level Synthesis, MLIR, Multi-Objective 

Optimization, Field Programmable Gate Array, Hardware 

Description Languages, Intermediate Representations. 

I. INTRODUCTION 

The advantages offered by Field Programmable Gate 
Arrays (FPGAs) for implementing digital systems have fueled 
a search for alternatives that can simplify the design process, 
making this technology accessible to a broader spectrum of 
research fields. FPGAs enable the implementation of 
synchronous designs, ensuring that instructions remain 
synchronized with the system's clock. Furthermore, these 
devices possess the capability to perform tasks in parallel, 
executing processes concurrently. However, all those 
advantages have a huge limitation; Hardware Description 
Languages (HDLs).  

The most commonly used HDLs include VHDL and 
Verilog. These languages enable users to design and debug 
digital systems at a higher level of abstraction than describing 
the entire circuit manually on schematic. However, designing 
a high-quality digital circuit requires a deep understanding of 
hardware design, alongside careful consideration of numerous 
factors in the design exploration process, which can 
potentially become cost-prohibitive [1]. An attractive solution 
to this problem is High-Level Synthesis (HLS) which 
facilitates the generation of hardware designs from behavioral 
descriptions written in high-level languages like C/C++ or 
Python. This methodology offers many advantages in the 

hardware design process, including reduced development time 
and more convenient methods for verification and debugging. 
Additionally, it extends an invitation to software designers to 
explore the field of hardware design. However, HLS has 
limitations. Designers need to consider hardware-specific 
factors, such as timing and resources, to get the best results. 
Moreover, this design process often does not produce 
implementations as efficient as those created manually [2][3].      

Software compilation and HLS both aim for similar 
optimization goals, such as removing unnecessary code, 
simplifying constants, and optimizing loops, just to name a 
few. Because of this, HLS tools often use structures from 
software compilation to make these improvements. A widely 
used tool for this purpose is the Low-Level Virtual Machine 
(LLVM) project [4], which serves as an open-source compiler 
infrastructure. Most HLS tools use LLVM as a front-end to 
generate code that works independently across different 
targets [5]. 

Despite its popularity, LLVM IR (Intermediate 
Representation) has a limitation, it operates at a single 
abstraction level to interface with the system. This limitation 
becomes apparent when dealing with specific domain-related 
problems, as many of these problems are better addressed 
using different levels of abstraction. To overcome this 
limitation, several programming languages such as Swift, 
Rust, and Julia have developed their own IRs to focus on 
domain-specific problems and improve the implementation 
process. In response to these challenges in programing 
language design and implementation, is proposed the Multi-
Level Intermediate Representation (MLIR) [6]. MLIR is a 
compilation framework that supports multiple levels of 
functional and representational hierarchy. Its ability to model 
various levels of abstraction provides compilers with a 
pathway to create domain-specific IRs.  

Currently, there are many HLS tools available, both 
commercial and academic, such as, Vitis HLS [7], Intel HLS 
[8] and BAMBU [9]. However, to generate a high-efficient 
digital circuit, the user still needing a deep knowledge of 
hardware to indicate the tool through directives the 
optimizations they need to achieve their design goal [2]. The 
HLS process often operates within a framework called Design 
Space Exploration (DSE). This framework assists in selecting 
the best design that aligns with project goals by employing 
techniques such as scheduling, allocation, and binding. It is 
important to note that these optimization techniques 
inherently involve multiple objectives, with several functions 
to be improved simultaneously [10][11]. The most common 
objectives that these tools seek to minimize are area, delay, 
and power consumption. 

In the following sections, we will provide detailed 
information about the current state of HLS tools, with a focus 
on features relevant to our work, including input/output 
languages and IR.   
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 The limitations involving the HLS process, including the 
requirement for solid hardware expertise, the diverse 
approaches to solving the same problem, and the necessity to 
perform multi-objective optimizations, have motivated the 
exploration of alternatives methods to enrich this process. To 
mitigate these limitations, we propose the utilization of Multi-
Objective Evolutionary Algorithms (MOEAs) to optimize a 
CDFG extracted from the MLIR compiler infrastructure. 
Furthermore, extracting specific information from MLIR's 
dialects contributes to enhancing the quality of the CDFG. 

This study aims to introduce a novel approach to tackle 
some of the existing challenges in the field of HLS. We 
propose an end-to-end design flow, starting from a high-level 
programming language, to HDL code. The HDL code as 
output will be optimized by the MOEA during the process, 
considering three objective functions (delay, area, and power).  

This paper is organized as follows: Section II presents a 
theoretical background related to High-Level Synthesis, 
LLVM/MLIR and the role of Multi-Objective Evolutionary 
Algorithms in this process. Section III presents a general 
overview of the current approaches and design methodologies 
presented in the literature. Section IV presents the details of 
the proposed methodology and the current stage of the project. 
Finally, Section V presents the conclusion and future work.  

II. THEORETICAL BACKGROUND 

This section aims to provide a theoretical background 
related to the process of High-Level Synthesis, including the 
infrastructure commonly used in these tools. Furthermore, it 
offers a comprehensive overview of the MLIR project and 
Multi-Objective Evolutionary Algorithms, both of which play 
key roles in the context of this work.  

A. High-Level Synthesis 

In short terms, HLS offers the capability to translate a 
behavioral description, typically written in a high-level 
programming language like C/C++, SystemC, or Python, into 
a hardware description that retains equivalent semantics. A 
general overview of the HLS design process is shown in Fig. 
1, the initial step involves the compilation of the high-level 
language description into an intermediate representation, 
which encapsulates critical information regarding data 
dependencies and control flow relationships among 
operations. Many HLS tools leverage different techniques for 
representing and analyzing the input code, such as utilizing the 
abstract syntax tree (AST) of C/C++ code, employing a 
traditional software compiler IR, or constructing a 
control/data flowgraph (CDFG) [12][13]. Subsequently, the 
IR undergoes a series of critical processes: scheduling, 
allocation, and binding. 

• Scheduling: Determines how individual operations are 
scheduled across clock cycles, establishing the 
temporal order in which operations will be executed. 

• Allocation: Selects the number and type of hardware 
resources, including Functional Units (FU), 
connectivity components, and storage elements, 
necessary to meet design constraints. These 
components are typically chosen from a hardware 
resource library that includes characteristics such as 
area, delay, and power consumption. 

• Binding: Dictates how each variable is linked to a 
specific FU in each clock cycle. 

 

Fig. 1. General diagram of the HLS process. 

The DSE framework helps the HLS tool identify the 
optimal design by exploring various combinations of 
scheduling, allocation, and binding decisions. Finally, 
considering the outcomes of these preceding tasks, is 
generated a Register-Transfer Level (RTL) description 
[11][12]. This RTL description serves as a lower-level 
representation of the hardware design, ready for further 
synthesis and implementation. Notice that the IR section is 
highlighted (Fig. 1), as its structure has a direct and significant 
impact on the capabilities of the HLS tool. In essence, the 
more robust and powerful the IR structure, the more proficient 
the HLS tool becomes in effectively translating the input code 
and executing optimizations [14]. 

B. Control and Data Flow Graph 

Data dependencies can be effectively illustrated using a 
data flow graph (DFG) where each node corresponds to an 
operation, and the connections between nodes represent input, 
output, and temporary variables. However, this structure 
models only data dependencies and no the control 
dependencies. This limits the use of DFG representation to a 
few applications. It is possible to extend the traditional DFG 
model by adding control dependencies and giving as result a 
control and data flow graph (CDFG). A CDFG is a directed 
graph in which the edges represent the control flow. The nodes 
in a CDFG are commonly referred to as basic blocks (BB). A 
BB is itself a DFG, a sequence of statements that contain no 
branches or internal entrance or exit points. A CDFG exhibits 
data dependencies inside BBs and captures the control flow 
between them [12][15].  As an example, in Fig. 2, is presented 
the CDFG of an if-else sentence. At first, the code will 
evaluate the condition (green node), considered as an entry 
point, if the condition is true the code will add 20 to a variable, 
if the condition is false, will add the variable b instead (blue 
nodes). At the end, it returns the result x value (yellow node). 

Congreso Internacional de Mecatrónica, Control e Inteligencia Artificial, UNAM, FESC, Estado de México, 2023

 118



 

Fig. 2. Example of a CDFG for an if-else sentence. 

C. LLVM/MLIR Compiler infrastructure  

As the MLIR project was inspired by LLVM, we consider 
that a brief overview of how LLVM works, will help the 
reader to visualize the advantages.  

LLVM [4] is a constantly growing project, that has been 
widely used for implementation of programming languages, 
and has become an essential resource for compiler research. 
In Fig. 3, is shown a basic example of how a C function can 
be transformed into a LLVM IR. This IR is composed by a 
control-flow graph (CFG) of labeled basic blocks and 
branches as CFG edges. It also contains the so called φ-
functions which purpose is to select the control-flow 
dependent values, defined in predecessor basic blocks. It's 
important to note that within each basic block, there exists an 
internally constructed DFG including the operations and 
values defined and referenced. In order to illustrate the 
relationship between the CDFG (Fig. 2) and the LLVM IR, 
the color of the nodes corresponds to the sections marked by 
colored lines. 

LLVM IR is a static single assignment (SSA) IR, which 
means that each value, known as SSA operand, is assigned 
exactly once. It is important to notice that, during the lowering 
from a high-level AST to LLVM IR, certain information from 
the source code will inevitably be lost [1]. 

 

Fig. 3. Example of a long function lowered to LLVM IR through Clang.  

Similar to LLVM, MLIR [6] includes a SSA style IR. This 
infrastructure, allows the user to capture domain-specific IRs 
into a Dialect. These dialects are collection of operations, 
attributes, and types that describe a particular domain. MLIR 
offers a versatile platform with both predefined dialects for 
common functionalities and an open framework that 
empowers users to create custom dialects. The shared 
semantics across all dialects are defined by the infrastructure 
itself, utilizes SSA values. In MLIR a sequential list of 
operations without control flow is defined as a BB, and a CFG 
of blocks is structured within a Region. Moreover, operations 
have the capability to include regions, enabling the 
representation of arbitrary design hierarchies.  

 In Fig. 4, we observe two different representations of the 
same f function within MLIR. Initially, the function is 
translated into SCF dialect. In this representation, the structure 
defines the constant (%c20_i64), followed by the 

computation of the as a Boolean value (%0). Then, it enters to 

scf.if operation, where the addition of the arguments is 

evaluated accordingly. Next, one can further lower the SCF 
dialect to Standard dialect, with blocks being used the same as 
BB in LLVM IR, where branches (br) are used for control 

flow. As same as previous figures, the colored lines 
correspond to the color in CDFG nodes. 

 

Fig. 4.  Example of a long function lowered to MLIR Standard through 

Polygeist [39] and MLIR. 

D. Multi-Objective Optimization in HLS 

In HLS the DSE can be classified as a multi-objective 
optimization problem, since the main goal is to minimize a set 
of conflicting design parameters [16]. As mentioned earlier, 
there are many possible optimizations during the process 
scheduling, allocation, and binding. These optimizations 
involve conflicting objective functions, by this reason, the 
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problem typically needs the application of a multi-objective 
optimization algorithms (MOAs). MOAs maintain a trade-off 
between conflicting metrics. The literature has reported the 
optimization of many objective functions during the HLS 
process, such as, delay, area, power, wirelength, digital noise, 
reliability, temperature, and security [11]. This work is mainly 
interested in the simultaneous optimization of:  

• Delay: Also called, timing, latency, or performance 
correspond to the total number of time steps or clock 
cycles. 

• Area: Total number of hardware resources necessary 
to meet design constraints. 

• Power: Total power consumption. 

All of these objective functions, are expected to be 
minimized by the algorithm. 

Multi-Objective Evolutionary Algorithms (MOEAs) have 
proven to be valuable tools for the DSE in HLS, helping the 
designers to select the design that aligns the best with project 
requirements. In the literature, many authors explore the 
integration of MOEAs in the HLS process [10][17][18]. 
However, in [19], is conducted a comparative analysis using 
quality indicators to evaluate the performance of some 
algorithms, including NSGA-II (Nondominated Sorting 
Genetic Algorithm II) [20], NSGA-III (Nondominated Sorting 
Genetic Algorithm III) [21] and SPEA2 (Strength Pareto 
Evolutionary Algorithm 2) [22]. These studies collectively 
demonstrate the feasibility and effectiveness of implementing 
MOEAs in the HLS process. 

III. RELATED WORK 

In the literature, various approaches and design 
methodologies have been documented, all sharing a common 
goal: addressing the limitations inherent in current HLS 
processes.  

Over the years, many HLS tools have been implemented 
[23]. Each of them offering distinct features, including 
variations in input/output languages, intermediate 
representations, their own internal optimizations, or 
specialization for specific devices or technologies. Also, these 
tools can be commercial or academic. Their general 
information is listed in Table I and Table II accordingly.  

TABLE I.  HLS ACADEMIC TOOLS. 

Tool Name Input 

Language 
Output Language IR 

LegUp [24] C Verilog 
DFG, CDFG, 

LLVM 

BAMBU [9] C Verilog/VHDL 
CDFG, Call 

Graph, LLVM 

Dynamatic [25]  C/C++ VHDL CDFG, LLVM 

DWARV [26] Subset C VHDL CDFG 

GAUT [27] C/C++ VHDL CDFG 

TABLE II.  HLS COMERCIAL TOOLS. 

Tool Name Input Language Output Language 

Vitis HLSa [7] C/C++, SystemC Verilog, VHDL 

Intel HLS [8] C/C++ 
Verilog, VHDL, 

System Verilog 

Smart HLS [28]  C/C++ Verilog 

Tool Name Input Language Output Language 

CyberWorkBench [29] BDL Verilog, VHDL 

Catapult-C [30] C/C++, SystemC Verilog, VHDL 

Stratus [31] C/C++, SystemC RTL 

Bluespec [32] BSV Verilog 

Synphony [33] M-language RTL, C-model 

MaxCompiler [34] MaxJ RTL 

a. Uses LLVM as an IR 

As shown in the tables, most of the tools primarily use 
C/C++ languages to describe the input program. Additionally, 
Verilog and VHDL are equally popular choices. Academic 
tools have limited information available, creating a barrier to 
identify their components, such as, the IR and its properties. 
However, the HLS community has introduced innovative 
design flows that incorporate high-level languages like Python 
[35][36] and Julia [37]. Some alternative approaches leverage 
the MLIR infrastructure to facilitate the transformation of 
code into an HDL [1][14][38].  

Despite the variety of design flows, designers are still 
required to address hardware-specific considerations. 
Furthermore, for our knowledge base, none of these 
approaches prioritize the concurrent optimization of area, 
latency, and power.  

IV. PROPOSED METHODOLOGY 

In order to contribute with an alternative for HLS process, 
we propose a design flow, which includes in its middle-end a 
MLIR and a CDFG that will be optimized by a selected 
MOEA. This aims to mitigate the limitations addressed in the 
Fig. 5, and reduce the hardware knowledge needed to achieve 
an optimal solution of a digital circuit. Also, the utilization of 
a novel compiler infrastructure like MLIR, offers an 
interesting entry point to explore and research their effect in 
the application of multi-objective optimization in HLS. 

A specific diagram of the proposed design flow is presented 
in Fig. 6. As a front-end, Polygeist [39] is a suitable option to 
transform C/C++ input code to MLIR. At this step, we propose 
to extract a CDFG from MLIR which nodes must contain the 
information related to delay, area, and power objective 
functions. These parameters, can be estimated as described in 
[40][41]. Once the CDFG is constructed, a multi-objective 
optimization will be performed by the selected MOEA 
(SPEA2, NSGA-II, NSGA-III). Finally, the optimized

 

Fig. 5. Illustrative diagram addressing the problem under study.  
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 CDFG will be translated to a VHDL code with equivalent 
semantics.  

 

Fig. 6. Diagram of the proposed design flow. 

At this stage of the project, we are working on the 
construction of the CDFG with the attributes corresponding to 
the objective functions to minimize (area, delay and power). 
Further, we will perform experiments applying the MOEAs to 
the CDFG mentioned before. Once this step is validated, we 
will continue with the translation of the CDFG into the VHDL 
code. The generated VHDL code must be ready to synthesize 
and implement into an FPGA using a platform like Xilinx 
Vivado [7] or Intel Quartus[8]. 

We are particularly interested in a software tool called 
“VHDL by MOEA” [42], which focuses on performing multi-
objective optimizations using a DFG extracted from input C 
code. This tool offers several advantages, including the 
visualization of the IR and the ability for users to select a 
MOEA along with its parameters, such as population size, 
generations, crossover, and mutation probability. Also, it 
produces optimized VHDL code as its output. However, 
“VHDL by MOEA” currently has limitations as it utilizes a 
DFG as its IR, which restricts the allowed C instructions. To 
address this limitation and enable more complex designs, we 
propose upgrading the tool to support a CDFG by leveraging 
the benefits of MLIR. This enhancement will make the tool 
more robust and versatile, allowing it to handle a wider variety 
of C code.  

We believe that integrating our proposed design flow with 
“VHDL by MOEA” presents an immediate and highly 
advantageous application of our research. This integration will 
significantly augment the tool's capabilities, opening the door 
to a more extensive range of code compatibility, aligning well 
with the goals of our research. 

V. CONCLUSION 

In this paper, we have presented a novel HLS design flow 
proposal aimed at reducing the designer's exposure to 
hardware aspects, effectively delegating these responsibilities 
to the optimization algorithm. The integration of MLIR 
compiler infrastructure adds significant flexibility to explore 
various design flows. For instance, it allows the 
implementation of a front-end that can translate from other 
high-level languages, such as Python (see nelli [43]), to an 
MLIR dialect, thus providing access to the methodology 
proposed in this work. Additionally, the back-end can be 
modified to convert the optimized CDFG into HDLs like 
Verilog or SystemVerilog, offering versatility in 
implementing digital circuits. 

As previously mentioned, this work is still in progress. The 
current stage involves parameter estimation for area, delay, 
and power, along with their assignment to the CDFG. 
Following this, we will proceed with the application of 
MOEAs to optimize the CDFG, resulting in an optimized 
graph. Ultimately, the CDFG will be translated into VHDL 

code and implemented using external tools such as Xilinx 
Vivado or Intel Quartus. The ability to select the 
implementation tool, which is not tied to any specific 
technology, vendor, or device, highlights the attractiveness of 
our proposed approach. 

HLS has proven successful in domains such as deep 
learning, video transcoding, graph processing, and 
bioinformatics [44]. These are areas where our proposed 
design flow can provide an interesting solution for hardware 
implementation. Moreover, we expect that the methodology 
presented in this work serve as a base for future research in the 
HLS flow and encourage the community to explore new 
optimization techniques or the integration and evaluation of 
other multi-objective evolutionary algorithms.  

This ongoing research holds the potential to significantly 
enhance the HLS process and reduce the complexity 
traditionally associated with hardware design, making it more 
accessible and versatile for a broader range of applications and 
technologies.  
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