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Abstract—In this paper, we analyze the impact on the accuracy
of CNN-based models when they use transfer learning from
different source domains; a general domain (ImageNet 2012
dataset) and a specific plant domain (PlantCLEF 2018 and
2019 datasets). Transfer learning has positively impacted the
accuracy of many classification models. Therefore, it has been
extensively used to train deep learning-based models. For many
years, the models that were trained on the ImageNet 2012 dataset
have been used for transfer learning. However, thanks to the
efforts of many research groups, other datasets are available for
specific domains, such as birds, cars, and plants, to name a few.
The models trained on these specific datasets can be used for
transfer learning to deal with related domain tasks as well. In
this work, we analyzed the accuracy of the models for plant
species classification using digital images. We used three models
previously trained on the ImageNet 2012, PlantCLEF 2018, and
PlantCLEF 2019 datasets as a starting point. Our results showed
that using a model trained on the PlantCLEF 2018 dataset helped
to improve the model’s accuracy in plant species classification.
We introduced a new dataset, Mexico 80 Flower, and used a
publicly available dataset, Oxford 102 Flower. The best models
were those based on InceptionResNet-v2, which obtained 98.29%
and 98.49% accuracies, respectively.

Index Terms—CNN, Deep learning, Plant Species Classifica-
tion, Transfer Learning

I. INTRODUCTION

Convolutional neural networks (CNNs) have emerged as the
most promising approach for image classification because of
their ability to learn reliable and discriminative features. In
recent years, transfer learning has helped to obtain more accu-
rate CNN-based models than models trained from scratch for
specific tasks. Transfer learning technique works by training
a model on a source dataset, and then we use the parameter
values as the initial parameter values for retrain a model on
a target dataset [1] [2]. The need to use transfer learning
for model training arises when there is limited training data.
The limited data may be because data is scarce, the data
is expensive to collect and label, or there is no more data.
Generally, the models that are used for transfer learning

were trained on source datasets that contain many training
images. The most common dataset used for transfer learning
is the ImageNet 2012 large-scale dataset. For many years, the
parameter values acquired by the models trained on this dataset
have been used for transfer learning. However, data availability
has made it possible to build other large-scale datasets for
specific domains, such as a plant domain. So, models trained
on these particular datasets can be used for transfer learning
to solve related domain tasks.

In this work, we analyze the accuracy of models for plant
species classification using transfer learning from two do-
mains. Plant species classification is considered a fine-grained
classification problem due to high interclass similarities and
high intraclass variations in this domain. We used models that
were trained in two different domains for transfer learning.
The first domain is the classical ImageNet 2012 dataset. This
dataset contains classes such as cars, persons, animals, and
buildings, to name a few. The second is a plant domain,
using transfer learning from models trained on PlantCLEF
2018 and 2019 datasets, respectively. These datasets depict
images of plant species in the field; each dataset contains
plant species from different regions of the world. The images
contain distinctive organs of the plant species, like flowers,
leaves, fruits, and trunks, to name a few. We analyzed the
performance of the trained models to answer the following
question. What effect does model accuracy have when starting
the training phase from ImageNet or PlantCLEF domains?

The main contribution of this paper is a comparative anal-
ysis of CNN-based models that use transfer learning from
different source domains for plant species classification using
flower images.

The rest of this paper is organized as follows. Section II
describes the related work. Section III presents a detailed
pipeline of the methodology used. Section IV describes the
used dataset and computing environment. Section V describes
the results obtained during the experimental evaluation. Fi-
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nally, in Section VI we present our conclusions and state future
research directions.

II. REALATED WORK

This section describes related approaches that used transfer
learning from the PlantCLEF challenges. In 2017, Ghazi et
al. [1] used the AlexNet, GoogLeNet, and VGG-16 models
for plant species classification. The models were trained from
scratch and using transfer learning. Transfer learning was used
from models that were trained on the LifeCLEF 2015 dataset.
This dataset contains 113,205 images of 1,000 plant species
native to France and neighboring countries. The authors re-
ported 78.44% accuracy for the VGG-16 model.

In 2018, Sulc et al. [3] won the ExpertLifeCLEF 2018 plant
classification challenge [4] using Inception-ResNet-v2 and
Inception-v4 models. The challenge consisted of identifying
10,000 classes from plant species digital images. The dataset
contains 1.4 million plant images. Transfer learning and data
augmentation techniques were used for training. Transfer
learning was used from Inception-ResNet-v2 and Inception-
v4 models that were trained on the ImageNet 2012 dataset.
The authors finished first place using an ensemble of 12
CNN models based on six Inception-ResNet-v2 models and
six Inception-v4 models. The authors reported 88.4% Top-1
accuracy.

In 2019, Chulif et al. [5] used the Inception-v4 and
Inception-ResNet-v2 CNN architectures to solve the Plant-
CLEF 2019 plant classification challenge [6]. The challenge
consists of identifying 10,000 classes of plant species from the
Guiana Shield and the Amazon rainforest. The training dataset
contains 434,251 images. The authors used transfer learning
from models previously trained on the ImageNet 2012 dataset.
The authors strategy was based on cleaning the dataset. First,
they removed the duplicate images, and second, they removed
additional near-duplicates based on a cosine similarity in the
feature space of the last layer of Inception-v4. Finally, they
removed non-plant images automatically detected using a plant
binary classifier based on Inception-v4. Overall, the number of
images on the dataset was reduced by nearly 42%. The authors
won first place on the PlantCLEF 2019 challenge obtaining
31.60% in Top-1 accuracy.

In 2020, Lee Lee et al. [7] investigated the impact of
using transfer learning from two domains to plant disease
classification. They used transfer learning from models trained
on ImageNet 2012 and PlantCLEF 2015 datasets. In the
experimental stage, the authors used the InceptionV3, VGG-
16, and GoogeNet architectures on the Plant Village [8], IPM
[9], and Bing [10] datasets. The Plant Village dataset contains
54,305 images divided into 38 classes. IPM and Bing datasets
were used as test datasets. The IPM dataset contains 119
images divided into 33 classes, and the Bing dataset includes
64 images divided into 38 classes. The best accuracies were
to the VGG-16 model using transfer learning from ImageNet
2012 dataset. The VGG-16 model obtained 99.00%, 44.54%,
and 28.13% in Top-1 accuracy on Plant Village, IPM, and Bing
datasets, respectively.

To the best of our knowledge, there is only one published
research work that analyzes the impact of transfer learning
using models trained on two source domain datasets; ImageNet
2012 and PlantCLEF 2015. However, the results presented
by Lee et al. [7] showed that when the models used transfer
learning from PlantCLEF 2015 did not outperform the model
that uses transfer learning from the ImageNet 2012 dataset. We
argue that this is due to the fewer images on the PlantCLEF
2015 dataset and a small representation of plant species. The
PlantCLEF 2015 dataset only contains 113,205 and 1,000
plant species, while the ImageNet 2012 dataset contains 1.2
million images corresponding to 1,000 classes. We know that
the ImageNet 2012 dataset is not a plant domain, but the
number of images per class allowed the model to learn the
parameter values to classify successfully. On the other hand,
we used transfer learning from the PlantCLEF 2018 and 2019
datasets in our work. These datasets have a larger number
of images and considerably more classes than the PlantCLEF
2015 dataset (the PlantCLEF 2018 dataset was built with
previous editions of PlantCLEF datasets). Finally, we analyzed
the data distribution on the PlantCLEF datasets to explain the
models results.

III. MATERIALS AND METHODS

This section describes the datasets where the models used
for transfer learning were trained. Furthermore, we describe
the transfer learning technique used in this work. Finally, we
briefly describe the CNN architectures used for training.

Figure 1 shows the diagram of our work. We used transfer
learning from models previously trained on three datasets.
Transfer learning was used for the Inception-v4 and Inception-
ResNet-v2 models. Inception-v4 and Inception-ResNet-v2
models were retrained on two plant species datasets, one
created by the authors and one publicly available dataset.
We used the k-fold cross-validation technique to evaluate
the results of our models during the training phase. Finally,
we analyzed the models accuracies that were obtained using
transfer learning from different domains.

A. Datasets for transfer learning

In this work, we used three models that were previously
trained on ImageNet 2012, PlantCLEF 2018, and PlantCLEF
2019 datasets. Figure 2 shows some images examples of each
dataset. We briefly describe the three datasets.

The most common dataset for transfer learning in deep
learning is the ImageNet 2012 dataset [11]. This dataset
contains 1.2 million images corresponding to 1,000 classes.
The classes on this dataset are objects in general; examples
of classes that can be found in this dataset are cars, airplanes,
ships, buildings, chairs, animals, and plants, among others.
The visual features of each class are very different. There-
fore, this kind of classification is considered a coarse-grained
classification.

The PlantCLEF 2018 dataset [4] contains 10,000 classes and
up to 1.4 million plant species images. When experts validate
the plant species images, they are called trusted images. There
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Fig. 1. General diagram of our work.

(a) (b)

(c) (d)

(e) (f)
Fig. 2. (a) (b) Images from the ImageNet 2012 dataset [11]. One thousand
classes are identified in this challenge, and the classes are objects in general.
(c) (d) Images from the PlantCLEF 2018 dataset [4]. The plant species are
mostly European plant species. (e) (f) Images from the PlantCLEF 2019
dataset [6]. The plant species are mostly tropical species from South America.

are 256,288 trusted images on this dataset. The plant species
are mainly located in the European and North American
regions, although it also reports plant species from the rest of
the world. There is a metadata file for each image containing
the organ tag, like flowers, fruit, and leaves, to name a few.
Most of the images are of plant species under field conditions.
In this dataset, datasets from previous PlantCLEF editions
were added.

The PlantCLEF 2019 dataset [6] is mainly formed with plant
species from the Guiana Shield and the Amazon rainforest.
This dataset contains 10,000 classes like on the PlantCLEF

2018, but the plant species are tropical. For the 2019 edition,
the number of plant species images was reduced drastically
to 434,251; only 58,619 are trusted images. In this dataset,
the organ tag is not available. In both PlantCLEF datasets, the
classification task is considered a fine-grained classification.

B. Transfer Learning

Transfer learning is the technique of using the knowledge
acquired in a task and using this knowledge to solve another
related task. In deep learning, this knowledge is the parameter
values acquired by a trained model, so the parameter values are
used as a starting point to train another classification model. In
practice, models trained on ImageNet or PlantCLEF datasets
are used for transfer learning. For this work, we used the fine-
tuning technique during the retraining of the models. We used
complete retraining of the parameter values of the models.
The models that we used for transfer learning in this paper
were the PlantCLEF 2018 models 1 and the PlantCLEF 2019
models 2 available for download. These models were provided
by Sulc et al. [3] [12].

C. CNN architectures used

We used Inception-v4 and Inception-Resnet-v2 architectures
in this work. Both architectures were presented by Szegedy
et al. [13], which are based on Inception (or GoogLeNet)
architecture [14]. The Inception-v4 architecture is based on a
variant of the Inception module, and the Inception-ResNet-v2
architecture is another variant but with residual connections.
The modules are stacked for building the architecture. The
input for both architectures is a tensor of order three and size
(299, 299, 3) representing a color image in RGB format. The
Inception-v4 architecture has 41,297,360 trainable parameters
and Inception-ResNet-v2 architecture has 54,475,066 trainable
parameters.

1http://ptak.felk.cvut.cz/personal/sulcmila/models/LifeCLEF2018/
2http://ptak.felk.cvut.cz/personal/sulcmila/models/LifeCLEF2019/
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Fig. 3. Annotating regions of interest.

IV. DATASET DESCRIPTION AND COMPUTING
ENVIRONMENT

This section describes the used datasets, the computing en-
vironment, and indices for evaluating the models performance.

A. Datasets

We used two datasets for experimentation. First, we created
our own dataset, and second, we used one publicly available
dataset to validate our proposal.

We created a dataset with images of the Mexican flora
from two different sources. The first source was images taken
by expert biologists during field expeditions in the northwest
region of Mexico. The second source was images taken from
Naturalista, an online social network for sharing biodiversity
information [15]. All images were taken under field conditions
containing background, angles, lighting, contrast, and scale
variations. The dataset was constructed by regions of interest
in the images collected. The regions of interest were defined
in each image by annotating the flower as the distinctive
organ. Some examples of the regions of interest are shown
in Figure 3. The regions of interest that we annotate vary in
size. Those regions of interest are always squared images to
eliminate distortion in the images. This is because the inputs
of the Inception-v4 and Inception-ResNet-v2 architectures are
299×299 RGB images. So, the dataset consists of 8,000 m×m
color images divides into 80 plant species from the Mexican
flora. Figure 4 shows some examples of images in the dataset.
We used only images of flowers for this work. We will refer
to this dataset as the Mexico 80 Flower dataset for the rest of
this paper.

The Oxford 102 Flower [16] dataset contains 102 plant
species and 8,189 images of flowers commonly found in the
United Kingdom. The flower images were taken under field
conditions and varied in large scale, pose, and light. Figure
5 shows some images from the Oxford 102 Flower dataset.
We noticed that the images have the flowers centered in most
cases. So, we preprocessed this dataset by cropping the largest
inscribed square from the original image. The resulting images
were used in our experimental stage.

B. Computing environment

We used a PC Workstation to carry on all experiments
presented in this work. The workstation had an Intel Xeon

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4. Image samples from the Mexico 80 Flower dataset. (a) Ipomoea
purpurea. (b) Ipomoea tricolor. (c) Argemone mexicana. (d) Echinocereus
pentalophus (e) Milla biflora. (f) Plumeria rubra. (g) Ludwigia octovalvis.
(h) Prunella vulgaris.

(a) (b) (c) (d) (e)

Fig. 5. Image samples from the Oxford 102 Flower dataset. (a) wallflower.
(b) hard-leaved pocket orchid. (c) stemless gentian. (d) common dandelion.
(e) spring crocus.

W-2133 processor with 32 GB of RAM and an NVIDIA
GTX 1080 Graphics Processing Card with 8 GB of memory.
We used Linux Ubuntu 18.04 as the operating system. The
software libraries that we used were CUDA toolkit 10.0, Keras
2.2.4, Tensorflow 1.13.1, and Python 3.6 to train the deep
classification models. We used the stochastic gradient descent
(SGD) training algorithm with a learning rate of 1 × 10−4

and a momentum of 0.9. We used a batch size of 16, and we
defined 40 epochs for iterating. The loss function used was
categorical cross-entropy.

V. EXPERIMENTAL EVALUATION

In this section, we present the results of the models using
transfer learning at a plant species classification task. We
used the Inception-v4 and Inception-ResNet-v2 architectures.
These architectures have been successfully used before on
similar tasks [3] [12] [17] and they have been winners on
the PlantCLEF 2018 and 2019 challenges [4] [6]. We trained
the classification models on Mexico 80 Flower and Oxford
102 Flower datasets using 10-fold cross-validation. We trained
both architectures using transfer learning from models trained
on the ImageNet 2012, PlantCLEF 2018, and PlantCLEF 2019
datasets. In all cases, we completely fine-tuned the model’s
parameter values during the training phase. Furthermore, we
used 10-fold cross-validation to ensure that the models were
properly evaluated. We used the accuracy of the models as
an index to compare the performance. The accuracy is the
percentage of model-correct responses to the total number of
samples.

In Table I, we show the accuracy of the models obtained
on both Mexico 80 Flower and Oxford 102 Flower datasets.
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TABLE I
RESULTS OF MODELS USING TRANSFER LEARNING FROM DIFFERENT

DOMAINS.

Architectures Trained on Accuracy (%)
Mexico 80

Flower
Oxford 102

Flower
Inception-v4 ImageNet 2012 88.38 88.70
Inception-v4 PlantCLEF 2018 95.26 95.98
Inception-v4 PlantCLEF 2019 93.09 92.72
Inception-ResNet-v2 ImageNet 2012 92.89 92.37
Inception-ResNet-v2 PlantCLEF 2018 98.29 98.49
Inception-ResNet-v2 PlantCLEF 2019 97.24 97.20

The results showed that the models that used transfer learning
from the plant domain (PlantCLEF 2018 and 2019 datasets)
achieved superior performance to models that used transfer
learning from a general domain (ImageNet 2012 dataset). First,
for Inception-v4 models, the models that used transfer learning
from ImageNet 2012 dataset were outperformed by those
models that used transfer learning from PlantCLEF datasets.
Those results were observed in both datasets. For Mexico
80 Flower and Oxford 102 Flower datasets, the Inception-
v4 models that used transfer learning from the PlantCLEF
2018 dataset reached 95.26% accuracy and 95.98% accuracy,
respectively. Second, the Inception-ResNet-v2 models that
used transfer learning from the PlantCLEF 2018 dataset ob-
tained the best overall accuracy. Those models results reached
98.29% accuracy on Mexico 80 Flower dataset and 98.49%
accuracy on Oxford 102 Flower dataset.

Figure 6 shows the learning curves of the best and worst
accuracy of the models trained on the Mexico 80 Flower
dataset. We contrasted the training phase of those models
in the experimental stage. Figure 6 (a) and Figure 6 (b)
show the accuracy values of the Inception-v4 and Inception-
ResNet-v2 models, respectively. The Inception-v4 model used
transfer learning from the ImageNet 2012 dataset, and the
Inception-ResNet-v2 model used transfer learning from the
PlantCLEF 2018 dataset. We observed a gap between the
training accuracy and validation accuracy for the Inception-v4
model. In contrast, we did not observe a gap in the learning
curves of the training accuracy and validation accuracy of the
Inception-ResNet-v2 model. Because the Inception-ResNet-
v2 model showed no gap between training accuracy and
validation accuracy during the training, this model obtained
the best result on the Mexico 80 Flower dataset.

Figure 7 shows the frequency distribution of images per
class on the PlantCLEF training datasets. The PlantCLEF 2018
dataset has more images per class than the PlantCLEF 2019
dataset. The red color represents the image distribution per
class on PlantCLEF 2018 dataset, and the blue color represents
the image distribution per class on PlantCLEF 2019 dataset.
A large number of images per class on PlantCLEF 2018
could benefit the learning of the models. Figure 8 shows the
frequency distribution of the flower images on PlantCLEF
datasets. We analyzed it because this paper deals with plant
species classification using flower images. We show the fre-
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(a) Inception-v4 model trained on ImageNet 2012.
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(b) Inception-ResNet-v2 model trained on PlantCLEF 2018.
Fig. 6. Comparison of model accuracies during the training phase using the
Mexico 80 Flower dataset.

quency distribution of the flower images for the PlantCLEF
2018 dataset only for the subset of trusted images (images
validated by experts). We observed that more than 65% of the
classes have at least one flower image. We did not perform
the same analysis on the PlantCLEF 2019 dataset because the
organ tag was not found in the metadata files. So, we show the
frequency distribution of the number of flower images on the
test set. We observed that 40% of the classes have at least one
flower image. In Figure 8, we show a zoom-in to compare the
distribution of images per class on the PlantCLEF datasets. We
know it is not a fair comparison as one set is the training set,
and the other is the test set. However, we plotted the available
information to get an idea of the distribution of images per
class on the PlantCLEF 2019 dataset.

Table II shows the number of classes and images for each
PlantCLEF dataset. We observed that the number of images on
the PlantCLEF 2018 dataset is larger than the PlantCLEF 2019
dataset. Furthermore, the number of trusted images is larger

Congreso Internacional de Mecatrónica Control e Inteligencia Artificial (CIMCIA), UNAM, FESC, Estado de México, 2022

37



Fig. 7. Frequency distribution of plant species images on PlantCLEF 2018
and PlantCLEF 2019 training datasets.

TABLE II
COMPARISON OF PLANTCLEF 2018 AND 2019 DATASETS.

Dataset Number
of Classes

Trusted
images

Total
images Ratio

PlantCLEF 2018 10,000 256,288 1,400,000 1:4
PlantCLEF 2019 10,000 58,619 434,251 1:6

than the PlantCLEF 2019 dataset as well. For the PlantCLEF
2019 dataset, there are six web search images for each trusted
image, while on the PlantCLEF 2018 dataset, there are only
four for each trusted image. Thus, there is a larger ratio
of web search images with respect to trusted images in the
PlantCLEF 2019 dataset. Web search images contain duplicate,
herbarium, and non-plant images. These web search images
are counterproductive to learning the model and complicate
the plant species classification (plant species in the field for
this paper). Furthermore, we observed that the plant species on
the Mexico 80 Flower dataset species are tropical as the plant
species on the PlantCLEF19 dataset. However, our results
show that a larger representation on the PlantCLEF18 dataset
of plant species with flower images helped the models to
obtain better results.

VI. CONCLUSION

In this work, we performed a comparative analysis of CNN-
based models that use transfer learning from different source
domains for plant species classification. The models that used
transfer learning from a plant domain obtained the best results
for the plant species classification using flower images. The
reason is that the source and target domains are related. Fur-
thermore, we noted that the accuracy of the models that used
transfer learning from the PlantCLEF 2018 dataset was better
than those that used transfer learning from the PlantCLEF
2019 dataset. We identified the following reasons. First, the
number of trusted and web search images on the PlantCLEF
2019 dataset is lower than on the PlantCLEF 2018 dataset.

Fig. 8. Frequency distribution of plant species with flower images on
PlantCLEF 2018 training set (Encyclopedia of Life) and PlantCLEF 2019
test set.

Furthermore, the ratio of web search images is six to one on
the PlantCLEF 2019 dataset. Thus, these web search images
generated noise that negatively impacts the learning process of
the models. Second, the distribution analysis showed that 65%
of classes on the PlantCLEF 2018 have flower images. This
flower representation helped the models in the plant species
classification. Both datasets have the same number of classes
but differ in data distribution. The PlantCLEF 2018 dataset has
a larger flower image representation (trusted images) than the
PlantCLEF 2019 dataset. We concluded that all those reasons
play a key role for the models trained on those datasets.

For future work, we intend to evaluate the performance
indices when the number of classes increases and pretend to
extend the experimental evaluation to other plant datasets.
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