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Abstract—Online monitoring of fermentation processes is a 

necessary task to determine concentrations of key biochemical 

compounds, demonstrate failures in process operations, and 

implement feedback controllers. However, obtaining the signals 

of all the important variables in a real process is a task that can 

be difficult and expensive due to the lack of suitable sensors or 

simply because some variables cannot be measured directly. 

From the above, a model-based approach, such as the state 

observer, can be a viable alternative to solve the estimation 

problem. This article discusses the real-time performance of a 

familiar sliding-mode observation strategy to reconstruct key 

variables in a batch bioreactor for fermentative ethanol 

production. For estimation purposes, the Hinshelwood model 

for ethanol production by Saccharomyces cerevisiae is used. The 

experimental results reported here show that the selected 

observer performs well since the structure used is robust to 

uncertainties and detection noise, properties that benefit the 

bioprocess estimation process. 

Keywords— Virtual sensor, Real-time implementation, Batch 

bioreactor, Ethanol fermentation, Sliding mode observer. 

I. INTRODUCTION

Bioprocesses are currently an industry of great economic 
importance [1]. A bioprocess is a process that uses living cells 
or one of their components, such as enzymes, to develop 
products. The use of yeast to produce alcohol, for example, is 
a bioprocess. 

The optimization of this is essential to obtain quality 
products, and minimize costs, operating times, and 
environmental pollution [2]. In this sense, online monitoring 
is essential to carry out control tasks, fault diagnosis, and the 
determination of the concentrations of the products of interest 
[2, 3]. However, this is a complicated, expensive, and 
sometimes very impractical task, this is due to the complexity 
of the reaction mixtures, which have to be carried out in 
controlled environments, with certain nutritional requirements 
for cell growth to exist and in consequence the production of 
the metabolites of interest (Products) [3, 4]. In addition, it is 
very common to find situations where the product to be 
measured requires prior treatments and/or specific techniques 
to carry out its quantification, which requires excessively long 
processing times [3]. It is worth mentioning that many times 
the instrumentation and available sensors do not always 
cover 

all the needs or at least the necessary ones [2]. The low 
availability of sensors in the market, their high costs, the 
presence of noise measurement, the operational policies of 
bioreactors, and their intrinsic nonlinear behavior are strong 
obstacles to bioreactor instrumentation [2, 3]. 

For all the above, virtual sensors (VS) are seen as a viable 
alternative to monitor key variables in bioprocesses. 
Furthermore, it has been shown that compared to expensive 
and relatively complex analytical techniques, SVs can provide 
reliable estimates online, are maintenance-free, and are less 
expensive [3]. 

Virtual sensors are mechanisms that allow variables to be 
calculated or estimated from the combination of online 
measurements provided by probes or sensors (hardware) and 
a computational algorithm (software) [3]. The objective is to 
use only the strictly necessary sensors and thus reduce costs 
for operation and maintenance [4]. Its operation and design is 
based on the principle that the dynamic evolution of all the 
variables is closely related to each of the process variables. 
Fig. 1 shows a general scheme of a virtual sensor. 

Fig 1. General scheme of the implementation of a virtual sensor in a 
bioprocess. 

SVs can be classified into: 

a) Techniques based on historical data: They use large
amounts of data from the process considered in order to 
classify them and find correlations between their variables to 
infer behavior patterns. In this class of techniques, artificial 
neural networks, vector-supported machines, and regressive 
models stand out [1]. These techniques are very useful when 
there is no process model or the model is very complex, 
however, their greatest disadvantage is that they require a high 
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computational cost and long training and adaptation times, in 
addition, the engineer or researcher in charge of designing 
them or implementing them must have a certain degree of 
experience in the system to be able to identify the possible 
correlations that exist between the data and the process 
variables. 

b) Model-based techniques: They combine online
measurements using physical sensors and an estimation 
algorithm based on a dynamic model that allows the 
phenomena that occur in a given process to be represented by 
means of differential equations [1]. The complexity of these 
models depends on the level of approximation to be achieved. 
On the one hand, the use of mathematical models facilitates 
the interpretation of the results, they do not require a specific 
architecture for their processing or training, they are easy to 
implement and have a lower computational cost, however, the 
efficiency of the algorithms depends directly on the quality of 
the models and measurements that are available [2]. Among 
the mechanisms for the development of virtual sensors are 
state observers, whose main objective is to estimate dynamic 
variables of a process from inputs, outputs, and a 
mathematical model. The idea is to reproduce the model with 
faster dynamics, which allows for predicting the behavior of 
the desired variables [1, 2]. 

SVs have already been applied in bioprocesses, we can 
find literature on the design and implementation of some state 
observers. However, a limiting factor when implementing in 
real time is the lack of adequate sensors [2-4]. It is common to 
find jobs where numerical simulations are carried out to 
evaluate the performance of the observers [5, 6]. The 
Luenberger observers and the extended Kalman filter are the 
most reported algorithms, which have been implemented in 
biohydrogen production processes, alcoholic fermentations, 
and anaerobic digesters where the main measurable variable 
is glucose concentration [7, 8], although we can also find 
literature on real-time implementations where the 
bioprocesses are already equipped with the necessary 
hardware and software for their implementation [9, 10]. For 
example, Petre et al. [11] developed an adaptive control law 
design based on nonlinear estimation algorithms for unknown 
inputs and kinetics. A common practice is to perform 
numerical simulations and validate the numerical results using 
experimental data. For example, Aviles et al. [8] designed an 
interval observer applied to a dark fermenter for biohydrogen 
production. The observer estimates the concentrations of 
glucose and biomass and the flux of hydrogen produced and 
compares its results with offline experimental data. 

This work studies the performance of a state observer for 
real-time monitoring of substrate and ethanol concentrations 
in a batch fermenter of the Saccharomyces cerevisiae strain, 
based on biomass measurement. The experimental 
configuration and the characteristics of the bioprocess are 
briefly exposed. The Hinshelwood kinetic model is used for 
the description of ethanol production. The effectiveness of the 
observation strategy is evaluated using the absolute integral 
error performance index. 

II. MATERIALS AND METHODS

A. Batch fermenter

Batch fermenters are characterized by being systems
closed to mass transfer and convergence in finite time. This 
type of bioprocess is carried out in bioreactors where the 
necessary environmental conditions are guaranteed [2]. In 

general, batch fermentation begins when a nutrient solution is 
added with an aliquot of the microorganism that is going to 
carry out the fermentation process and stops at the end of the 
logarithmic phase for the primary metabolites, or before the 
death phase begins for secondary metabolites [2]. Monitoring 
of state variables and reaction speeds is important to guarantee 
product quality, avoid losses and reduce costs [3]. 

B. Experimental platform

The experimental configuration of the batch fermenter is
shown in Fig. 2, the reactor consists of a 2 L beaker which 
works at a temperature of 30°C and stirring at 150 rpm, the 
reactor is instrumented with a turbidity probe Low cost. Data 
acquisition and processing are performed with the NI CRIO-
9030 high-performance real-time controller. 

Figure 2. Scheme of the experimental setup in batch operation. 

Fermentation was carried out with an inoculum of 0.1 g L-
1 of Saccharomyces cerevisiae, with 1 L of sterile YM 
medium. The initial substrate concentration was adjusted to s0 
= 46 g/L. The incubation temperature was 30°C and the 
agitation was 150 rpm [12]. The fermentation time was 24 h. 

Total reducing sugars were estimated using the 
dinitrosalicylic acid (DNS) colorimetric method. Ethanol was 
determined by chromatography. The standard curve was 
obtained with HPLC-grade ethanol (Sigma-Aldrich). A 
Varian CP-9002 gas chromatograph with a flame ionization 
detector equipped with a ZB-FFAP column was used. Optical 
density measurements, the dry weight method, and the GT-
TSW-30 probe were used to follow the course of cell growth. 
The optical densities of the samples were measured 
spectrophotometrically at 230 nm using a cell-free medium as 
blank [12]. 

C. Kinetic model

Mathematical models help describe the changes and

phenomena that occur inside the reactors. Mathematical 

models are key pieces to guarantee a good performance of the 

observation strategies [2-4]. These can be classified into 

structured and unstructured models. Structured models use a 

more detailed approach to cell metabolism, with the aim of 

better describing the dynamic behavior of the process. On the 

other hand, we have unstructured models, which completely 

ignore the variation of biomass composition in response to 

environmental changes. These types of models, although very 

simple in nature, have been applied with considerable success 

in many studies, as well as in industry, for observation, 

control, and optimization purposes [4]. The present work used 

the Hinshelwood model [13], for the description of bioethanol 

production in a batch bioreactor by the microorganism 

Saccharomyces cerevisiae as described in Equations (1)–(3). 
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Substrate Balance (s):  

                                     �̇� = − (
1

𝑦𝑥
𝑠

�̇�) − (
1

𝑦𝑝
𝑠

𝐸�̇�)                             (1) 

Biomass balance (𝑥): 

                        �̇� = 𝜇𝑚𝑎𝑥 (
𝑠

𝑘𝑠𝑥+𝑠
) (1 − 𝐾𝑝𝑥𝐸𝑡)𝑥            (2) 

Ethanol balance (Et): 

                      �̇�𝑡 = 𝑄𝑚𝑎𝑥 (
𝑠

𝑘𝑠𝑝+𝑠
) (1 − 𝐾𝑝𝑝𝐸𝑡)𝑥                 (3) 

here (𝜇𝑚𝑎𝑥  𝑎𝑛𝑑 𝑄𝑚𝑎𝑥)   are the specific growth and 

production rates, (𝑘𝑠𝑥 𝑎𝑛𝑑 𝑘𝑠𝑝)  are the average rate 

constants, (𝐾𝑝𝑥 , 𝑘𝑝𝑝) are the inhibition constants. 

In general, the system of equations (1-3), can be represented 

by the following nonlinear system: 

 

                            �̇� = 𝒇(𝝀, 𝒖);   𝝀(𝒕𝟎) = 𝝀𝟎                       (4) 

                                    𝑦 = ℎ(𝜆) +  𝛿 

where 𝜆 ∈  ℜ𝑛 is the vector of state variables; 𝑢 ∈  ℜ𝑞 is the 

vector of control inputs; 𝑦 ∈  ℜ𝑝 are the measurable inputs; 

𝛿  is an additive bounded noise obtained during the 

measurement. 

D. Observability through an inferential diagram 

Inference diagrams are a technique used to study the 

observability of nonlinear systems. The technique starts from 

the principle that there are connections between its states, 

inputs, and outputs [2, 14]. The inference diagram is built 

considering the following points [15]: 

1) Draw a bond, 𝜆𝑖 → 𝜆𝑗  if 𝜆𝑗  appears in the 

differential equation for 𝜆𝑖 . This implies that by 

monitoring 𝜆𝑖  it is possible to obtain information 

about 𝜆𝑗. 

2) Decompose the inference diagram into a unique set 

of maximal strongly connected components (SCC). 

SCCs are subgraphs selected such that there is a 

direct path from every node to every other node in 

the subgraph. Dotted lines enclose the SCCs. It is 

worth noting that each node in an SCC contains 

information about the other nodes. The so-called 

root SCCs do not have output links. 

3) We chose at least one node of each root SCC, which 

would be the sensor node, to guarantee the 

observability of the whole system. 

 

Fig. 3 shows the inference diagram of Equations (1-3), 

where the set of state variables 𝝀 = [𝒔, 𝒙, 𝑬𝒕] is represented 

by nodes on the graph, where the sensor node 𝛾 = [𝑥] are 

marked in red and the set of target nodes 𝜃 = [𝑠, 𝐸𝑡] is 

marked in green. 

 

 

 

 

 

 

 
Fig. 3. Observability analysis (inference diagram) of Equation (1-3). 

 

Postulate 1: Equation (4) is observable for the output vector 

𝑦 = [0,1,0]𝑇ℵ 

 

E. Sliding-Mode Observer 

For the design of this type of observer, a sliding variable 

is selected, which represents the difference between the 

measured variable (𝑦) and the estimated (�̂�), so that it has a 

relative degree 1 concerning the designed injection signal. 

The discontinuous control signal acts on the first derivative 

with respect to the time of the sliding surface 𝜎 to maintain 

the trajectories of the system in the sliding set 𝑦 − �̂� = 0 

[16]. The discontinuous term is the one that allows the system 

to reject disturbances and parametric uncertainties [16], but it 

is also the one that produces chattering. In most cases, 

sliding-mode observers are obtained by injecting a nonlinear 

discontinuous term that depends on the output error within 

the observing system. The discontinuous injection must be 

designed so that the system trajectories are constrained to lie 

on some sliding surface in the error space. The resulting 

movement is called sliding mode [16]. 

 

The following dynamical system is an asymptotic 

observer of Equation (4) [2, 5]: 

 

                �̂� = 𝑓(�̂�, 𝑢) + 𝜅(𝑦 − �̂�) + 𝜎𝑠𝑖𝑔𝑛(𝑦 − �̂�)         (5) 

where the next expression defines the sign function: 

 

𝑠𝑖𝑔𝑛(𝑦 − �̂�) = {

   1 𝑖𝑓 𝑦 − �̂� > 0
   0 𝑖𝑓 𝑦 − �̂� = 0
−1 𝑖𝑓 𝑦 − �̂� < 0

 

 

𝜎 =  [𝜎1, 𝜎2, 𝜎3]𝑇  is the observer gain vector sliding mode 

and 𝜅 =  [𝜅1, 𝜅2, 𝜅3]𝑇 is the gains of the proportional part. 

 

This observer structure is related to identification and 

observation problems by including an uncertainty estimator 

and a state observer. The observer proportional part has 

stabilizing effects on the observer performance; high 

proportional gains ensure that the estimation error will 

decrease. To guarantee the stabilizing properties, the 

proportional gains must be in function of a positive solution 

of the Riccati algebraic equation [5]. The sliding part of the 

observer serves to compensate for uncertain nonlinear terms 

and provides asymptotic convergence. When sufficiently 

large sliding gains are chosen, the instability effect of the 

bounded nonlinear element can be decreased. This behavior 

occurs because, once on the sliding surface, the trajectories 

of the system remain on that surface, so the sliding condition 

is taken and the surface and the invariant are configured. This 

implies that some disturbances or dynamic uncertainties can 

be compensated for by keeping the surface as an invariant set. 

For more information check the stability properties and the 

convergence test in [5].  

III. RESULTS AND DISCUSSION 

Fig. 4 shows the dynamic evolution in the ethanol 
production process with an initial substrate concentration of 
46 g/L. The ethanol concentration was 14.52 g/L and a 
biomass concentration of 4.1 g/L at the end of fermentation. 

𝑥 

𝑠 

𝐸𝑡 
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Fig 3. Dynamic behavior of the proposed model, experimentally validated. 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. The residual value for substrate, biomass, and ethanol. 

The results presented in Fig. 3 reveal that the proposed 
kinetic model was able to predict the concentrations of 
ethanol, substrate, and biomass (lines), obtained from 
experimental data (symbols). The observed trend indicates 
that the fermenting microorganism metabolizes the substrate 
to produce ethanol. This observation confirms the 
corresponding progressive increase in ethanol and biomass 
concentrations as cells metabolize the substrate to induce 
growth and subsequently produce ethanol [17]. The 
magnitude of a typical residual provides a general idea of the 
precision of our estimates fig 4. 

The parameters of Equations (1)–(3) were calculated as a 
first approximation using the initial reaction rate method, 
taking into account the experimental data, followed by the 
Levenberg-Marquardt least squares minimization algorithm 
[18], in Table I we show the optimal values of the kinetic 
parameters. To generate the results reported in this paper, the 
ODEs were integrated using the ode15s function in MATLAB 
2016a®. 

 TABLE I. KINETIC PARAMETERS FOR THE MATHEMATICAL MODEL 

 

A common way to assess the fit of the model is to use 
statistical indicators such as the coefficient of determination 
(R2, E). From this criterion, it was concluded that the model 

accurately portrayed the experimental data, evaluated by 
applying R2 (average) = 0.9488 and E (average) = 0.9509 for 
the two initial conditions. Moreover, in all cases, R2 and E 
were close to unity, indicating that the model produced a good 
fit. 

 Table II. Statistical correlation coefficients for quantifying 
the effectiveness of the model in describing the experimental 
observations related to discontinuous fermentation. 

 TABLE II. STATISTICAL CORRELATION COEFFICIENTS FOR QUANTIFYING THE 

EFFECTIVENESS OF THE MODEL IN DESCRIBING THE EXPERIMENTAL 

OBSERVATIONS RELATED TO DISCONTINUOUS FERMENTATION 

 

 

 

 

A. Implementation of the State Observer in Real-Time 

The results of the implementation in real-time are shown 
below. In this work, a TS-300B turbidity sensor was used to 
measure biomass density. The sensor is composed of an 
infrared light-emitting diode on one side and a phototransistor 
to detect the intensity of light passing through the open 
channel to the opposite slide [2, 19]. The output signal (Vout) 
is read directly by NI cRIO 9030. 

 Fig. 5 shows the experimental prototype where the 
estimation algorithm was executed in real-time. The 
observation structure (5) was programmed in LabVIEW Real-
Time with a sample time of 30 ms. The observer gains were 

obtained empirically, the vector 𝜎 = [0.5,10,20]𝑇  and 𝜅 =
 [160,6 ,10]𝑇. 

 

Figure 5. Implementation of observation strategies in the prototype plant. 

 

The trajectories of each state observer (solid lines) were 

extracted from the NI cRIO 9030 and imported into 

MATLAB. In addition, a comparison with the experimental 

data was performed. Fig. 6 shows the performance of each 

state observer 

 

Fig 6. Real-time implementation of the observation structures and their 
comparison with the off-line experimental data. 

Symbol Value Units Definition   

𝝁𝒎𝒂𝒙 0.4 ± 0.2 1/ℎ Maximum Specific 

Growth Rate 

𝑸𝒎𝒂𝒙 5 ± 2 1/ℎ Maximum substrate 
consumption rate 

𝒌𝒔𝒙 30 ± 2 𝑔/𝐿 half speed constant 

𝒌𝒔𝒑 90 ± .001 𝑔/𝐿 half speed constant 

𝒚𝒙/𝒔 0.085 ± 0.1  yield 

𝒚𝒑/𝒔 0.2413 ± 0.1  yield 

𝒌𝒑𝒙 50 ± 5 𝐿/𝑔ℎ Setting parameter 

𝒌𝒑𝒑 30 ± 5 𝐿/𝑔ℎ Setting parameter 

𝒏 1.5 ± .1  Setting parameter 

Variable 𝑹𝟐 𝑬 

Substrate 0.9652 0.9659 

Biomass 0.9462 0.9483 

Ethanol 0.9352 0.9385 
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 The observation strategy was evaluated by using the 
performance index IAE (integral absolute error), Table III. 
Performance indices allow us to evaluate the behavior of the 
observer based on experimental data, for which an error 
function (𝑒) defined as the difference between the measured 

variable (𝑦𝑒𝑥𝑝) and the estimated variable (�̂�) is used [2, 20]. 

In addition, a comparison is made between the IAE of the 
observer vs. the IAE of the model, where the error function for 

the model was defined as 𝑒 =  𝑦𝑒𝑥𝑝 − 𝑦. 

𝐼𝐴𝐸 = ∫ |(𝑒)(𝑡)|𝑑𝑡
∞

0

 

The corresponding values of the performance index IAE 
are depicted in Table III. 

 

 TABLE III. REAL-TIME ESTIMATION ERROR 

 

 

 

 

 

 

Fig. 7 shows the performance indices of the observer (blue 

line) and those of the model (red line), it is observed that the 

observer has a better performance obtaining smaller ISE 

values compared to the values obtained with the model. 

 

 
Fig 7. Comparison of observer performance index (blue line) vs. model 

performance index (red line). 

 

IV. CONCLUSIONS 

State observers are a viable alternative for the online 

monitoring of bioprocesses, they can provide reliable 

estimates online, require no maintenance, and are less 

expensive. It is important to emphasize that the modeling of 

bioprocesses is not something so trivial and the designer must 

carry out the validation of his model since the success of the 

observation strategy will largely depend on the quality of the 

model. The sliding mode observation strategy has been 

shown to perform satisfactorily for batch fermentation 

processes. 
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 𝑠 𝑥 𝐸𝑡 

IAE                     𝑦𝑒𝑥𝑝  vs   �̂� 

 81.45 2.56 7.61 
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 55.33 2.35 5.43 
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