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Abstract—Over the last few decades, electricity consumption
in the residential sector has been increasing and with the advance
of technologies, different types of loads have been used and
consumer behavior has changed. It is therefore important to
improve electricity consumption models for residential consumer
units, in order to incorporate changes in habits and consumer
uncertainties. This article proposes the use of Fuzzy Inference
Systems (FIS) and Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) to estimate the electricity consumption of residential
units, taking into account consumer behavior, climate and socio-
economic factors. The dataset used for training and validation
has 2073 hourly consumption samples that were collected from
the 2019 Survey of Ownership and Habits of Use of Electrical
Equipment in the Residential Class, drawn up by the Programa
Nacional de Conservação de Energia Elétrica. The FIS and
ANFIS models were implemented using the Fuzzy Logic toolbox
and the ANFIS toolbox, both from MatLab. The results were
evaluated in terms of mean absolute error (MAE), mean absolute
percentage error (MAPE), mean square error (MSE) and root
mean square error (RMSE). The proposed models were developed
and validated, with the FIS model obtaining a MAPE of 40.55%
and the ANFIS model 4.71%, proving to be best accuracy to the
problem than the FIS model.

Index Terms—intelligent systems, Fuzzy Inference Systems,
Adaptive Neuro-Fuzzy Inference Systems, Estimating Residential
Consumption, Hourly Consumption Model

I. INTRODUCTION

Studies by the World Energy Council point to a transition
in several countries, from centralized electricity systems to
decentralized electricity systems, with the insertion of Dis-
tributed Energy Resources (DERs) [1], [2]. Although DERs
connect to a distribution network, and in each case it is
relatively small, it affects the system as a whole, i.e. the
distribution system and the transmission system [3].

Technological advances in the energy sector and the wider
dissemination of DERs will mean that consumers will no
longer have the role of just consuming energy, but will play
a more active role [4]. In this way, the agents involved will
have different roles and consumers will no longer be passive,
but will become prosumers [5].

In Brazil, with regard to changes in consumer behavior
and the complexity of the system, in order to optimize the
use of energy resources, the country will have to develop

public policies that policies that take into account not only
the growth in energy consumption, but also the new consumer
behavior [4]. Within this new consumer behavior, one of the
recommendations of the National Energy Plan - 2050 is to
improve models for forecasting the electricity load curve,
incorporating the greater participation of consumers and the
associated uncertainties.

For decades, research into estimating electricity demand
over a given period has focused on annual demand and on
models that consider the power grid load as a total energy
demand, without regard to the source of consumption [6], [7].

Therefore, in order to contribute to research into forecasting
models that incorporate human aspects and the uncertainties
related to the problem, this paper proposes integrating the
estimation of electricity consumption for residential consumer
units, correlating the climatic aspect, the economic-social
aspect and the human behavioral aspect. This article combines
the different aspects in a Fuzzy Inference System (FIS) and
an Adaptive Neuro-Fuzzy Inference System (ANFIS).

The theory of fuzzy sets was created to deal with the vague
aspect of information [8] and the theory of possibilities to deal
with the imprecision of information [9]. These theories are
closely linked and it is therefore possible to deal with both the
imprecision and uncertainty of a set of information, and they
are widely used in systems that use information provided by
human beings [10]. In the literature found, a FIS can be used
in several ways, the main ones being to perform intelligent
home energy management [11]–[15] and to optimize energy
use in the home [16]–[20]. The application of FIS for load
curve estimation was found in some articles, being used to
model the load curve of residential lighting [21], [22] and to
model the profile or consumption of residential energy [23]–
[25]. ANFIS’ main applications are energy management [26]–
[28] and estimating electricity consumption [29]–[33].

Next, in Section II, a brief overview will be given of
the theories related to FIS and ANFIS. Section III presents
the methodology used in this article, highlighting the dataset
and pre-processing, the estimation models and the evaluation
criteria. Section IV presents the results obtained and the
relevant discussions. Finally, Section V concludes the work.
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II. RELATED THEORIES

A. FIS

In classical theory, the pertinence of an element is very well
defined, and it can be classified as belonging or not belonging
to the set. The pertinence function µA(x) expresses that given
a universe X , the elements of this universe belong or do not
belong to the set [34], [36], and is mathematically represented
by Equation 1.

µA(x) =

{
1 if x ∈ A

0 if x /∈ A
(1)

that is, the element has only two degrees of pertinence in
relation to the set [0 or 1].

In fuzzy logic, an object can partially belong to a given set,
because fuzzy sets have real values defined in the interval [0,
1] [8]. A fuzzy set A, defined in a universe of discourse I can
be represented by Equation 2.

A = {(x, µA(x))|x ∈ I} (2)

where µA(x) indicates how compatible x is with the set A.
A FIS has three main blocks: fuzzifier, inference and

defuzzifier [35], illustrated in Figure 1.

Fig. 1. Block diagram of an FIS (adapted from [36])

Normally, real values resulting from some measurement or
observation are used as input to the FIS, commonly referred
to as crisps values. The fuzzifier block is responsible for
transforming the crisp value into a corresponding fuzzy value.
It is at this stage that the linguistic values are assigned to the
input variables [36].

The rules are fundamental to the good performance of a FIS
and can be provided by experts. Thus, the rule base contains
the set of rules that is responsible for all the fuzzy reasoning,
using the linguistic variables. It is made up of rules of the type
if ... then [36].

The inference block performs the operations of the fuzzy
system according to what has been established in the rule base,
which performs the fuzzy logic using the linguistic variables
[36].

Finally, the defuzzifier block converts the information in
the fuzzy domain into crisp output using the defuzzification
methods [36], including the maximum criterion, the average
of the maximum and the center of the area [35].

B. ANFIS

The main problem with fuzzy logic is that there is no
organized process for transforming human knowledge or ex-
perience into a rule base, and, in order to minimize the
output error, it is necessary to adjust the pertinence functions
which makes validation difficult, as it requires the help of an
expert. On the other hand, a neural network can learn from its
environment and adapt interactively to it [37].

ANFIS is a multi-layer feedforward network that maps an
input space to an output space using neural network learning
algorithms and fuzzy reasoning, it can combine the word
abstraction power of a fuzzy system with the numerical power
of an adaptive neural network. This system is able to learn,
build, count and classify, and its advantage is that it can extract
rules from numerical data, or expert knowledge, and build a
rule base based on the training data.

Figure 2 shows a simplified ANFIS for two inputs and one
output. To represent the different adaptive capabilities, squares
were used for nodes with parameters (adaptive nodes) and
circles for nodes without parameters (fixed nodes) [37].

Fig. 2. ANFIS Architecture (adapted from [37])

According to [37], each of the layers has the following
characteristics:

layer 1: Its output is the degree of pertinence of the respective
input, based on the assumptions of the rules. Where x
is the input of node i and Ai is the linguistic variable
associated with its respective node, represented by
Equation 3.

O1
i = µAi

(x) (3)

layer 2: The degree of pertinence for the consequent of each
rule is calculated. The output of each node represents
the degree of activation of a rule, given by Equation
4.

ωi = µAi
(x)× µBi

(y) (4)

layer 3: The degree of activation of the rules is normalized
according to Equation 5.

ωi =
ωi

ω1 + ω2
, i = 1, 2, ... (5)

layer 4: The output of this layer is calculated by the prod-
uct between the normalized output of the previous
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layer and the degree of activation of the consequent,
represented by Equation 6.

O4
i = ωifi (6)

layer 5: It outputs the system’s crisp output, according to
Equation 7.

O5
i =

∑
i

ωifi (7)

In this way, a neuroadaptive system is built that is equivalent
to an FIS of the type Takagi-Sugeno [37]. The ANFIS learning
process is carried out iteratively until the stopping criterion is
reached.

III. METHODOLOGY

A. Dataset and pre-processing

The dataset used in this work was collected from the
2019 Survey of Ownership and Usage Habits of Electrical
Equipment in the Residential Class (PPH-2019), which was
drawn up by the Programa Nacional de Conservação de
Energia Elétrica [39]. As a result of this survey, various pieces
of information can be obtained about the use and ownership
of equipment in the residential class, such as load curves,
consumption by equipment and others. The load curves can be
classified according to the region of residence, federative unit,
social class and month. The data was selected for the southeast
region of Brazil, and hourly consumption information was
obtained for each of the social classes and for each of the
months.

The residential consumption data is shown in Figure 3, with
a total of 1728 samples: 6 social classes, 12 average monthly
temperatures (one for each month) and 24 hours per day. The
data has a downward trend, as it is separated by social classes
and in descending order, so the first samples refer to the
highest social class and the last samples refer to the lowest
social class, thus reflecting consumption for each of them.

Fig. 3. Electricity consumption per hour in 2019, by social class and by
month

B. Hourly consumption estimation models

1) FIS model: The research by [23]–[25] was used as a
basis for estimating hourly consumption using FIS models.
In the work by [23], [24], the author used the periods of
the day and the occupancy of the home as inputs for the
FIS and validated the system using the energy consumption
measurements of just two homes as a reference.

In the work by [25], a FIS was used with “periods of the
day” as input to estimate the consumption curve of the electric
stove and washing machine. Another FIS was used with “day
periods” and “day-night” as inputs, and this system was used
to estimate the lighting consumption curve.

One of the models proposed by this research is a FIS
model for estimating the hourly consumption of a home in
southeastern Brazil, but with three inputs and validation using
data from PPH-2019.

The inputs and outputs were classified in pertinence func-
tions according to the specificity of each variable, the classi-
fication being as follows:

• Input “social class”: “upper”, “middle”, “middle-lower”
and “lower”

• Input “temperature”: “low”, “medium” and “high”
• Input “time”: “sleep 1” (0-4h), “morning” (4-11h),

“lunch” (11-15h), “afternoon” (15-18h), “night” (18-21h)
and “sleep 2” (21-23h)

• Output “consumption”: “low”, “low-medium”,
“medium”, “medium-high” and “high”

Figures 4, 5, 6 and 7 show the curves of the relevance
functions for each of the inputs and outputs, respectively.

Fig. 4. Pertinence functions of the “social class” input

Fig. 5. Pertinence functions of the “temperature” input

2) ANFIS model: Some previous works, such as [29], [33],
have already estimated energy consumption using ANFIS
models. This work differs from the others in that it uses
different input variables and is applied to the Brazilian scenario
of residential electricity consumption.

To estimate hourly consumption using the ANFIS model,
the FIS model was used as a base. As previously mentioned,
the ANFIS system uses neural network learning algorithms to
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Fig. 6. Pertinence functions of the “time” input

Fig. 7. Pertinence functions of the “consumption” output

train the parameters of a fuzzy system, for which the data must
be separated into training and validation data. To train and
validate the ANFIS model, the data was randomly separated
into 80% for training and 20% for validation.

In order to make a comparison between the models proposed
in this research, the ANFIS model used the same number of
inputs and outputs as the FIS model, as well as the same
number of pertinence functions for each of them. However,
the system generated by the ANFIS model is of the Sugeno
type, while the FIS model is of the Mamdani type.

C. Evaluation criteria

The results of the FIS and ANFIS models for estimat-
ing hourly electricity consumption for the residential sector
are evaluated and compared using the Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Mean
Square Error (MSE) and Root Mean Square Error (RMSE).
The following formulas are used to determine these evaluation
criteria:

MAE =
1

n

i=1∑
n

|Yi − Ŷi| (8)

MAPE =
1

n

i=1∑
n

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ (9)

MSE =
1

n

i=1∑
n

(
Yi − Ŷi

)2

(10)

RMSE =

√√√√ 1

n

i=1∑
n

(
Yi − Ŷi

)2

(11)

where n is the number of validation samples, Yi is the real
value of the sample and Ŷi is the estimated value of the sample.

IV. RESULTS AND DISCUSSIONS

The results were obtained for each of the proposed models
and according to the configuration of inputs and outputs
previously defined. In order to obtain the result of the FIS
model and make a comparison with the ANFIS model, the
same data was used to validate the ANFIS model.

Figure 8 shows the expected values and the estimated values
for each of the FIS model validation samples. It can clearly
be seen that the FIS model had a high error. However, as
presented by [37], the creation of the rule base and the adjust-
ment of the pertinence functions does not follow an organized
process and, most of the time, is carried out empirically.

By combining all the possible inputs, a rule base with 72
rules (4x3x6) was obtained. As the number of rules is high,
the adjustment and combination process was very laborious
and even then the error was considerable. To minimize the
error, the rule base was redone several times, considering a
logic between the input and output variables.

This model is a first version and the rule base can be im-
proved with the help of an expert, working on the relationships
between the inputs and the output. In this way, the model is
expected to obtain better results.

Figure 9 shows the expected values and the estimated values
for each of the ANFIS model validation samples. It can be
seen that the error was much smaller and in most points
the estimated value was very close to the expected value.
This shows the power of the ANFIS tool in combining fuzzy
systems with an artificial neural network.

Fig. 8. Expected values vs estimated values for FIS model

Table I shows the error values used to evaluate and compare
the models. These values corroborate what has already been
observed. The ANFIS model performed better than the FIS
model in all evaluation criteria. As the MAE, MSE and
RMSE are absolute errors, they can be used to compare the
models, but it is not possible to say that a model is good or
bad by looking at these values. However, the MAPE has an
independent scale, which is based on the relative error, and is
therefore the most significant [41]. Thus, it can be said that
the ANFIS model is very good, as it obtained a low MAPE
of only 4.71%
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Fig. 9. Expected values vs estimated values for ANFIS model

TABLE I
ERRORS FOR EACH MODEL

Modelo MAE MAPE MSE RMSE
FIS 71,36 40,55% 8698,25 140,28

ANFIS 8,33 4,71% 211,12 14,53

V. CONCLUSION

This study aimed to estimate residential electricity con-
sumption by correlating the climatic aspect, the economic-
social aspect and the human behavioral aspect. Two estimation
models were developed: a FIS and an ANFIS.

For both systems, the same inputs were considered, with
the same number of pertinence functions for each one, as well
as for the output of the models. Figures 8 and 9 show the
validation of the models by comparing the expected value and
the estimated value for each sample. The MAE, MAPE, MSE
and RMSE indicators were used to metrify the evaluation of
the models, and the results for each model are shown in the
table I. The model using ANFIS showed a much better result
than the model using FIS. As MAPE is a relative error, it can
be said that the model using ANFIS performed very well for
estimating hourly residential electricity consumption.

The models obtained through this work were able to
correlate the behavioral-human aspect, the economic-social
aspect and the climatic aspect for estimating hourly electricity
consumption for the residential sector, with the model using
ANFIS standing out the most. As this is a first version of the
estimation of energy consumption considering these aspects
of the Brazilian scenario, the work has fulfilled what was
proposed. For future work, other aspects can be selected for
use and the models can be improved.
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