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Abstract—This work proposes a new methodology of Direct
Adaptive Inverse Control (DAIC) via Modified Variable Step
Size Fractional Least Mean Square (MVSS-FLMS) algorithm.
The main objective of this work is to analyze the performance of
MVSS-FLMS algorithm in DAIC design, in terms of convergence
speed of the controller weight vector and steady-state Mean
Square Error (MSE) of the error used to update the estimate
of the controller weight vector. The results obtained in DAIC
design through MVSS-FLMS algorithm were compared with the
results obtained through Fractional Least Mean Square (FLMS)
algorithm. As a complexity scenario, the proposed methodology
was evaluated on a non-minimum phase plant in the presence of
a disturbance signal added to the control signal. In addition, the
reference signal used is of sinusoidal type.

Index Terms—Adaptive Inverse Control, Fractional LMS,
Inverse Model, FIR Filter, Non-minimum Phase.

I. INTRODUCTION

Since Adaptive Inverse Control (AIC) was proposed by [1],
several contributions to this method have been proposed in the
literature [2]–[8]. A promising contribution to AIC theory was
proposed by [9] and titled Direct Adaptive Inverse Control
(DAIC). Like AIC, DAIC is a control technique based on
plant model inverse identification, such that in the absence of
uncertainty, the controller is equal to the plant inverse model.
For DAIC, due to the controller weight vector to be updated
as a function of the reference error and to be implemented in
a quasi-feedforward configuration, the controller is designed
to track the plant inverse dynamics even in the presence of
disturbance signals. Several contributions to DAIC theory have
been proposed in the literature. In [10], neural DAIC based on
nonlinear model identification was proposed. In [11], a DAIC
methodology was proposed for position and speed control of
electric motors. In [12], a neural DAIC methodology for Skid
Steering boat control was proposed.

In this work, the controller is represented by a Finite Im-
pulse Response (FIR) type adaptive filter. Since the controller
is defined by a linear mathematical representation, then it is
possible to use algorithms based on stochastic gradient to
estimate the controller weight vector [11]. In the literature, the
controller weight vector of DAIC has generally been estimated
using the following algorithms based on stochastic gradient:
Least Mean Square (LMS) [13] and Normalized Least Mean
Square (NLMS) [11].

The development of methodologies for fractional signal
processing based on the theory of fractional calculus is of
great interest to scientific community of mathematics, physics
and engineering [14]. The fractional calculus was proposed
in the late 17th century by Liouville, Reimann and Leibniz
[15] and, is a generalization of the traditional calculus, such
that the order of derivation and integration operations is a
fractional number [16]. Fractional calculus is used to model
dynamics systems of different natures, such as Brownian
motion, diffusion systems, harmonic oscillators, and others
[17]. Other applications can be seen, for example, in control
system [18], [19], neural networks [20], identification systems
[21]–[23], time series prediction [24], [25], classification [26]
and optimization [27]. In the context of adaptive algorithms
based on stochastic gradient, in [28] a new version of LMS
algorithm based on the Rieman-Liouville fractional derivative
definitions was proposed, titled Fractional Least Mean Square
(FLMS). In this present paper, the estimation of the weight
vector of DAIC was performed through the Modified Variable
Step Size FLMS (MVSS-FLMS) algorithm, proposed in [29].
The MVSS-FLMS algorithm is an improvement of FLMS,
such that the adjustment of the step size is performed with the
goal of obtaining a good trade-off between the convergence
speed and the steady-state Mean Square Error (MSE) [29].

The main contribution of this work is to evaluate the
performance of MVSS-FLMS algorithm in DAIC design, in
terms of convergence speed of the controller weight vector and
steady-state MSE. In addition, the results obtained in DAIC
design through MVSS-FLMS algorithm were compared with
the results obtained through FLMS algorithm. Until the present
moment, according to the bibliographical studies carried out
by the author of this paper, no contribution to the DAIC design
has been proposed using the MVSS-FLMS algorithm. The
performance analysis was performed on a non-minimum phase
plant in the presence of a periodic disturbance signal added to
the control signal. This paper is organized with the following
sections: in Section II, the mathematical formulations for
DAIC are presented; in Section III, the mathematical formula-
tions of MVSS-FLMS algorithm are presented; in Section IV,
the computational results obtained are presented.

Notation: Matrices and vectors are denoted by bold letters.
The superscripts (•)T represent a transposed matrix. The
operator E[•] represents the expected value of a aleatory
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variable.

II. DIRECT ADAPTIVE INVERSE CONTROL

In this work, the plant model P (q�1) in discrete time is
considered monovariable, stable, causal, and non-minimum
phase, such that the relationship between the plant output
signal y(k) and the control signal u(k) is given by:

y(k) = q�dB(q�1)

A(q�1)
u(k) = P (q�1)u(k), (1)

where A(q�1) = 1 + a1q�1 + a2q�2 + . . . + anq�n and
B(q�1) = 1+ b1q�1 + b2q�2 + . . .+ bmq�m with n,m 2 N.
It is important to note that (1) is described as a function of
the N -th delay operator q�N , which performs the following
operation q�Nr(k) = r(k � N) with N 2 N and k 2 N
represents the k-th time instant. In addition, d 2 N is the
delay size between u(k) and y(k). In this work, the control
configuration used for the DAIC is shown in Fig. 1 [11].
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Fig. 1: Block diagram for the DAIC.

As proposed by [11], in the DAIC configuration shown
in Fig. 1, the controller, estimated directly as a function of
the reference error eref (k) and error estimation emod(k), is
represented by Ĉ(q�1). It is important to note that in the
absence of uncertainty the controller Ĉ(q�1) is equal to the
plant inverse model. In addition, a delay block is inserted
between the reference signal r(k) and the signal yd(k), such
that q�Lr(k) = r(k�L) = yd(k), where L ⇠= (M+d+m)/2
and M is the generic order of the controller [11].

In this work, the controller is represented by an M -order
adaptive FIR filter, where ⇥(k) 2 RM⇥1 is the weight vector.
The control signal u(k) is given by:

u(k) = Ĉ(q�1)r(k), (2)

which can be rewritten as follows:

u(k) = ✓0r(k)+ ✓1r(k� 1)+ . . .+ ✓M�1r(k�M +1), (3)

since Ĉ(q�1) = ✓0 + ✓1q�1 + ✓2q�2 + . . .+ ✓M�1q�M+1. In
compact form, (3) is rewritten in vector notation, given by:

u(k) =  T(k)⇥(k) = ⇥T(k) (k), (4)

where R(k) = [r(k) r(k � 1) . . . r(k �M + 1)]T 2 RM⇥1

is the reference signal vector.
The update of the estimate of the weight vector ⇥(k) is

given as a function of the error ec(k). It is important to
note that the update of the error ec(k) is given as a function
of the update of the estimated plant model P̂ (q�1). In this
work, P̂ (q�1) is represented by an N -order adaptive FIR filter,
where ⇧(k) 2 RN⇥1 is the weight vector. The output signal
ŷ(k) of P̂ (q�1) is given by:

ŷ(k) = P̂ (q�1)u(k), (5)

which can be rewritten as follows:

ŷ(k) = ⇡0u(k)+⇡1u(k�1)+ . . .+⇡N�1u(k�N +1), (6)

since P̂ (q�1) = ⇡0 +⇡1q�1 +⇡2q�2 + . . .+⇡N�1q�N+1. In
compact form, (6) is rewritten in vector notation, given by:

ŷ(k) = UT(k)⇧(k) = ⇧T(k)U(k), (7)

where U(k) = [u(k) u(k � 1) . . . u(k �N + 1)]T 2 RN⇥1

is the control signal vector.
It is important to note that the update of the estimate of

the weight vector ⇧(k) of P̂ (q�1) is given as a function
of estimation error emod(k). The estimation error emod(k) is
given by:

emod(k) = y(k)� ŷ(k) =
h
P (q�1)� P̂ (q�1)

i
u(k) (8)

After this, the error ec(k) needed to update the estimate
of the weight vector ⇥(k) of C(q�1) is obtained. The error
ec(k) is given by:

ec(k) = P̂ (q�1)eref (k), (9)

which is equivalent to following difference equation ec(k) =
⇡0eref (k) + ⇡1eref (k � 1) + . . . + ⇡N�1eref (k � N + 1),
where eref (k), which is the reference error, is given by:

eref (k) = q�Lr(k)� y(k)
= r(k � L)� y(k)
= yd(k)� y(k)

(10)

III. MODIFIED VARIABLE STEP SIZE FLMS ALGORITHM

Let ⌥(k) 2 RM⇥1 be the weight vector of an adaptive
FIR filter. According to Wiener criterion [30], the update of
the estimate of the weight vector of an adaptive FIR filter is
obtained as follows:

⌥(k + 1) = ⌥(k)� 1

2
µr⌥(k)(E[e

2(k)]), (11)

where the cost functional J = r⌥(k)(E[e
2(k)]) is given as a

function of the stochastic gradient of the squared error e2(k) =
(d̄(k)� d̂(k))2 with d̂(k) = ⌥T(k)X (k) = X T(k)⌥(k). It is
important to note that µ is the step size, d̄(k) is the system
output signal and d̂(k) is the output signal of the adaptive
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FIR filter. The goal of Wiener criterion is the minimization
of r⌥(k)(E[e

2(k)]), where the optimal solution is given by
⌥0 = R�1p with r⌥(k)(E[e

2(k)]) = 2R⌥(k) � 2p,
where R = E[X (k)X T(k)] is the autocorrelation matrix
and p = E[X (k)d(k)] is the cross-correlation vector. It is
quite costly, in the context of real-time operation, to work
with the autocorrelation matrix and cross-correlation vector
to obtain the optimal solution ⌥0. This problem can be
solved by reformulating the cost functional as a function of
the instantaneous values of the squared error. Thus, the cost
functional J is rewritten as follows:

J = r⌥(k)(e
2(k)), (12)

substituting (12) into (11), it is obtained the LMS algorithm,
given by:

⌥(k + 1) = ⌥(k)� 1

2
µr⌥(k)(e

2(k))

= ⌥(k) + µe(k)X (k),
(13)

where r⌥(k)(e
2(k)) = �2e(k)X (k).

Using the FLMS algorithm, the weight vector of the adap-
tive FIR filter can be updated as follows [28]:

⌥(k + 1) = ⌥(k)� µ
@J(k)

@⌥(k)
� µf

✓
@J(k)

@⌥(k)

◆v

J(k),

(14)
where v 2 (0, 1) is the fractional order of the derivative [14].

Through the chain rule, the partial derivative
@J(k)

@⌥(k)
is

given by [31]:

@J(k)

@⌥(k)
=

@J(k)

@e(k)

@e(k)

d̂(k)

@d̂(k)

@⌥(k)
, (15)

where another way to rewrite (15) is given by:

@J(k)

@⌥(k)
= �e(k)X (k). (16)

Through the chain rule, the partial derivative✓
@

@⌥(k)

◆v

J(k) is given by [31]:

✓
@

@⌥(k)

◆v

J(k) =
@J(k)

@e(k)

@e(k)

@d̂(k)

✓
@

@⌥(k)

◆v

d̂(k). (17)

Definition 1 [31]: The fractional derivative of Riemann-

Liouville of a function f is given by:

(Dvf)(t) =
1

�(k � v)

✓
d

dt

◆v Z T

0
(t� ⌧)k�v�1f(⌧)d⌧

(18)

(Dvf)(t� ↵)↵ =
�(1 + ↵)

�(1 + ↵� v)
(t� ↵)↵�v, (19)

where 1+↵� v > 0, t > 0 and D is the differential operator.
It is important to note that the gamma function �(v) is defined
as [32], [33]:

�(v) =

Z 1

0
tv�1e�tdt. (20)

Using (16) and (19), (17) is rewritten as follows [29]:
✓

d

d⌥(k)

◆v

J(k) = �e(k)X (k)
(⌥(k))1�v

�(2� v)
. (21)

Substituting (16) and (21) into (14), it is obtained that:

⌥(k + 1) = ⌥(k) + µe(k)X (k) + µfe(k)X (k)
(⌥(k))1�v

�(2� v)
.

(22)
The equation of update of weight vector though MVSS-

FLMS algorithm, according to [29], is obtained considering
that µf = µ�(2� f). Thus, (22) is rewritten as follows:

⌥(k + 1) = ⌥(k) + µe(k)X (k) + µe(k)X (k)(⌥(k))1�v

= ⌥(k) + µe(k)X (k)
⇥
1 + (⌥(k))1�v

⇤

(23)
According to [29], it is important to note that the variable

step size is obtained as follows:

µ(k + 1) = c [µ(k)(0.1� µ(k))exp(�e(k)e(k � 1))]
(24)

where µ(k) is the variable step size, c is a scaling parameter
and exp(•) is the exponential function. After obtained (24),
(23) is rewritten as follows:

⌥(k + 1) = ⌥(k) + µ(k)e(k)X (k)
⇥
1 + (⌥(k))1�v

⇤

(25)

IV. COMPUTATIONAL RESULTS

In this section, are presented the results obtained through
DAIC design by the MVSS-FLMS algorithm and application
to non-minimum phase plant referring to a system Electro-
Hydraulic Actuator (EHA). The plant model P (q�1) was
obtained in [34], given by:

y(k) =
�0.03093 + 0.3836q�1 � 0.2738q�2

1� 1.57q�1 + 1.056q�2 � 0.1695q�3
(u(k) + n(k)),

(26)
where y(k) [mm] is the piston displacement of EHA system
or plant output signal, n(k) [V] is the disturbance signal added
to the control signal u(k) [V]. The plant model is stable with
poles located at 0.6725 ± 0.5488i and 0.2250. In addition,
the plant model is non-minimum phase with zeros located at
11.6418 and 0.7604.

The results obtained through DAIC design by the MVSS-
FLMS algorithm were compared with the results obtained
through FLMS algorithm. For the FLMS algorithm, the value
of the step sizes were set equal to µ = 5 ⇥ 10�4, µf =
5 ⇥ 10�4; the value of the fractional order was set equal to
v = 0.5. For the MVSS-FLMS algorithm, the initial value of
the step size was set equal to µ(1) = 5⇥ 10�4 and the value
of the fractional order was set equal to v = 0.5; the value of
c in (24) was set equal to 0.01. The total time of simulation
was set equal to 60 s, where the sampling period used was set
equal to Ts = 5 ms.

The delay block q�L was set with L = 6. In order to
obtain non-conservative results, the reference signal r(k) =
Asin(!ts) is of sinusoidal type, where the frequency was set
equal to 0.1Hz, ! = 2⇡f , A is the maximum amplitude of
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r(k) and ts = Tsk. It is important to note that at each 15 s the
maximum amplitude of the reference signal r(k) was changed,
in the following sequence: 5 mm, 8 mm, 9 mm and 12 mm.
The order of Ĉ(q�1) and P̂copy(q�1) = P̂ (q�1) was set equal
to M = N = 10. In addition, it is important to note that the
performance analysis of MVSS-FLMS and FLMS algorithms
in DAIC design, in terms of convergence speed and steady-
state MSE, was performed only for the controller Ĉ(q�1). The
convergence speed of the weight vector ⇥(k) was analyzed
through the convergence speed of y(k) to r(k). The steady-
state MSE was analyzed through the error ec(k) used to update
the estimate of the weight vector. In Fig. 2, it is shown the
plant output signal y(k). In Fig. 3, it is shown the disturbance
signal n(k). In Fig. 4, it is shown the reference error eref (k).
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Fig. 2: Plant output signal y(k) (obtained through DAIC
designed by the FLMS and MVSS-FLMS algorithms) and
reference signal r(k).
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Fig. 3: Disturbance signal n(k).
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Fig. 4: Reference error eref (k).

Due to the step size of MVSS-FLMS algorithm to be
variable, even in the presence of the disturbance signal n(k),

a satisfactory tracking of the inverse plant dynamics was ob-
tained through the update of the estimate of the weight vector
⇥(k) of the controller Ĉ(q�1). The satisfactory tracking of
the inverse plant dynamics can be verified through the fast
and satisfactory convergence of the plant output signal y(k)
to the reference signal r(k), when compared to the FLMS
algorithm. In addition, this result can be verified through the
reference error, where it is possible to note that eref (k) is
smaller for the DAIC designed by the MVSS-FLMS algorithm,
when compared to the FLMS algorithm. The estimation error
emod(k), used to update the estimate of the weight vector
⇧(k) of the model P̂ (q�1), is shown in Fig. 5.
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Fig. 5: Estimation error emod(k).
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Fig. 6: Error ec(k).
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Fig. 7: MSE of ec(k).

In Fig. 6, it is shown the error ec(k), used to update the
estimate of the weight vector ⇥(k) of the controller Ĉ(q�1).
In Fig. 7, it is shown the MSE of ec(k). In Fig. 7, it is
noted that the MSE of ec(k), for the DAIC designed by the
MVSS-FLMS algorithm, quickly converges to zero, even in
the presence of the disturbance signal. In Fig. 8, it is shown
the control signal u(k). It is possible to note that the control
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Fig. 8: Control signal u(k).

signal u(k) developed by the DAIC designed by the MVSS-
FLMS algorithm obtained lower amplitudes when compared
to the DAIC designed by the FLMS algorithm. The obtained
results show that the update of the step size proposed by [29]
allowed to the DAIC designed by the MVSS-LMS algorithm
to obtain better results with respect to convergence speed and
steady-state MSE, when compared to the DAIC designed by
the FLMS algorithm.

V. CONCLUSION

In this work, it was performed the evaluation of perfor-
mance of MVSS-FLMS algorithm in DAIC design applied to
the control of non-minimum phase plant in the presence of
disturbance signal added to the control signal. As presented,
satisfactory results were obtained in terms of convergence
speed and steady-state MSE for the MVSS-FLMS algorithm,
confirmed through the satisfactory and fast convergence of
y(k) to r(k) and steady-state MSE of ec(k) equal to zero,
even in the presence of the disturbance signal.
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