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Abstract—This work proposes a new methodology of nonlinear
Direct Adaptive Inverse Control (DAIC). In this methodology, the
controller is based on the Volterra model. To obtain a better inter-
pretability and decrease the complexity of mathematical analysis,
the Volterra model was truncated up to the second order kernel.
The weight vector of Volterra model was estimated through the
Modified Variable Step Size Least Mean Square (MVSS-FLMS)
algorithm. Since the Volterra model is nonlinear, the proposed
methodology was evaluated on a dynamic system represented
through of a Nonlinear AutoRegressive with eXogenous inputs
(NARX) model in the presence of a disturbance signal.

Index Terms—Adaptive Inverse Control, Fractional LMS,
Inverse Model, Nonlinear Control, Volterra Series.

I. INTRODUCTION

The Direct Adaptive Inverse Control (DAIC) technique
proposed by [1] aims to control the plant inverse dynamics
using a quasi-feedforward configuration. DAIC is a control
technique based on inverse model identification. In the absence
of uncertainty, the controller is equal to the plant inverse
model. Usually, the DAIC methodologies have been formu-
lated with the controller mathematical representation based on
classes of linear models [1]–[4]. Although the DAIC with the
controller mathematically defined by a linear representation
performs well in tracking the inverse dynamics of linear plants,
in the presence of nonlinearity the performance of tracking the
plant inverse dynamics will be unsatisfactory.

One possible solution for tracking of the inverse dynamics
of nonlinear plants is through mathematical representations
of classes of nonlinear model. However, depending on the
complexity of the nonlinear model, it is quite difficult to per-
form the design and practical implementation of a controller
based on a nonlinear model [5]–[7]. In order to achieve greater
interpretability and less complexity in nonlinear DAIC design,
it is necessary to impose constraints on the nonlinear model
obtained [8], [9].

One class of mathematical representation of nonlinear mod-
els used in many different applications are the nonlinear
models based on Volterra series [10], [11]. A Volterra model
can be defined as a generalization of the impulse response of a
dynamic system, composed by the combination of linear terms
and nonlinear terms of polynomial type [12]. Some examples

of application areas of Volterra models: predictive control [13],
[14], time series prediction [15]–[17], classification [18], [19],
fault diagnosis [20], [21], and others. To obtain increased
interpretability and decreased mathematical complexity of the
nonlinear DAIC, the order of Volterra model, in this work,
has been truncated up to the second order kernel. Thus, the
controller is represented mathematically by a second order
Volterra model.

According to [3], since the weight vector of Volterra model
are linear, then it is possible to use algorithms based on
stochastic gradient to estimate them. In the context of adap-
tive algorithms based on stochastic gradient, in [22] a new
version of LMS algorithm based on the Rieman-Liouville
fractional derivative definitions was proposed, such that the
order of the derivative of the cost functional is fractional, titled
Fractional Least Mean Square (FLMS). In this present work,
the estimation of the weight vector of Volterra model was
performed through the Modified Variable Step Size FLMS
(MVSS-FLMS) algorithm, proposed in [23]. According to
[23], the MVSS-FLMS algorithm is an improvement of FLMS
algorithm, such that was proposed the use of the variable step
size to obtain a better learning rate and, consequently, a fast
convergence speed and a small steady-state Mean Square Error
(MSE) during the update of the estimate of the weight vector
of Volterra model. Since the Volterra model is able to represent
nonlinear dynamics of polynomial type, the proposed control
methodology was evaluated in a plant represented through
a Nonlinear AutoRegressive with eXogenous inputs (NARX)
model in the presence of a disturbance signal. This paper is
organized with the following sections: in Section II, the mathe-
matical formulations for the nonlinear model based on Volterra
series and MVSS-FLMS algorithm are presented; in Section
III, the mathematical formulations for the nonlinear DAIC are
presented; in Section IV, the computational results obtained
through the evaluation of the proposed control methodology
in the presence of a disturbance signal are presented.

II. NONLINEAR VOLTERRA MODEL

According to [10], a Volterra model is a generalization of
impulse response of dynamic systems, composed of linear
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terms and nonlinear terms of polynomial type. According
to [12], the linear terms of Volterra model are due to the
convolution of the input signal u(k) with the impulse response
function (first order Volterra kernel); the nonlinear terms are
due to convolution the multiplications between the delayed
versions of the input signal u(k) with the impulse response
function (higher order Volterra kernel). The general form of
Volterra model is given by:

y(k) =
+1X

m=1

. . .
+1X

nm=�1
✓m (n1, . . . , nm)

mY

i=1

u (k � ni) ,

(1)
where m is the degree of nonlinearity of Volterra model and
✓m (n1, n2, . . . , nm) is the m-th order Volterra kernel. It is
important to note that the higher the order of a Volterra model,
the better the model can perform in representing complexities
[12], [24], [25]. However, the higher the complexity of the
model the more complex it will be to estimate the weights of
the m-th order Volterra kernel, of mathematical analysis and
controller design. A common alternative to work with Volterra
models is truncating it up to the second order. Even with
a truncated order Volterra model, it is possible to represent
nonlinear dynamics of polynomial type [26]. In addition,
through a truncated order Volterra model, it is easier to
work on applications involving nonlinear system identification,
nonlinear system control, nonlinear filtering, and others. Thus,
the second-order Volterra model is given by:

y(k) =
N1X

n1=0

✓1 (n1)u (k � n1)

+
N2X

n1=0

N2X

n2=0

✓2 (n1, n2)u (k � n1)u (k � n2) ,

(2)

where ✓1(n1) is the first order Volterra kernel and ✓2(n1, n2)
is the second order Volterra kernel.

A. Estimation of the Weight Vector of a Second Order Volterra
Model

To reduce the complexity of Volterra model, in (2) it was
set that N1 = N2 = 2. Then, the general form of a second
order Volterra series is given by:

y(k) =
2X

n1=0

✓1 (n1)u (k � n1)

+
2X

n1=0

2X

n2=0

✓2 (n1, n2)u (k � n1)u (k � n2) ,

(3)

According to [26], since the weight vector of Volterra are
linear, it is possible to use the FLMS algorithm to estimate
them. According to [12], the update of the estimate of the
weight vector of Volterra model through of FLMS algorithm
is given by:

⇥(k + 1) = ⇥(k)� µ
@J(k)

@⇥(k)
� µf

✓
@J(k)

@⇥(k)

◆v

J(k),

(4)

where J = r⇥(k)(e
2(k)) is the cost functional described as

e2(k) = (ȳ(k) � y(k))2, v is the fractional order, µ and uf

are the step sizes, ȳ(k) is the system output signal and y(k)
is the Volterra model output signal. It is important to note
that the weight vector ⇥(k) 2 R12⇥1 and regressors vector
U(k) 2 R12⇥1 are given, respectively, by:

⇥(k) =

2

6666666666664

✓1(0)
...

✓1(2)
✓2(0, 0)
✓2(0, 1)

...
✓2(2, 1)
✓2(2, 2)

3

7777777777775

U(k) =

2

6666666666664

u(k)
...

u(k � 2)
(u(k))2

u(k)u(k � 1)
...

u(k � 2)u(k � 1)
(u(k � 2))2

3

7777777777775

.

(5)
According to [27], through the chain rule, the partial deriva-

tive
@J(k)

@⇥(k)
is given by:

@J(k)

@⇥(k)
=

@J(k)

@e(k)

@e(k)

@y(k)

@y(k)

@⇥(k)
, (6)

which can be rewritten as:

@J(k)

@⇥(k)
= �e(k)U(k). (7)

According to [27], through the chain rule, the partial deriva-

tive
✓

@

@⇥(k)

◆v

J(k) is given by:

✓
@

@⇥(k)

◆v

J(k) =
@J(k)

@e(k)

@e(k)

@y(k)

✓
@

@⇥(k)

◆v

y(k). (8)

Definition 1 [28]: The fractional derivative of Riemann-
Liouville of a function f is given by:

(Dvf)(t) =
1

�(k � v)

✓
d

dt

◆v Z t

0
f(⌧)(t� ⌧)k�v�1d⌧,

(9)

(Dvf)(t� ↵)↵ =
�(1 + ↵)

�(1 + ↵� v)
(t� ↵)↵�v (10)

where 1+↵� v > 0, t > 0 and D is the differential operator.
The Gamma function �(v) is defined as [29]:

�(v) =

Z 1

0
tv�1e�tdt. (11)

According to [23], using (7) and (10), (8) is rewritten as
follows:

✓
d

d⇥(k)

◆v

J(k) = �e(k)U(k)
(⇥(k))1�v

�(2� v)
. (12)

Using (7) and (12), (4) is rewritten as follows [23]:

⇥(k + 1) = ⇥(k) + µe(k)U(k) + µfe(k)U(k)
(⇥(k))1�v

�(2� v)
.

(13)
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As proposed in [23], to obtain the MVSS-FLMS algorithm,
it is considered that µf = µ�(2� f). Due to this considera-
tion, (13) is rewritten as follows:

⇥(k + 1) = ⇥(k) + µe(k)U(k) + µe(k)U(k)(⇥(k))1�v

= ⇥(k) + µe(k)U(k)
⇥
1 + (⇥(k))1�v

⇤

(14)
After obtaining (14), it is necessary to make the step size

µ variable, such that the update of µ is given by [23]:

µ(k + 1) = c [µ(k)(0.1� µ(k))exp(�e(k)e(k � 1))]
(15)

where c is a scaling parameter, µ(k) is the step size obtained
at time k and exp(•) is the exponential function. Thus, the
equation for updating the weight vector described in (14) is
rewritten as:

⇥(k + 1) = ⇥(k) + µ(k)e(k)U(k)
⇥
1 + (⇥(k))1�v

⇤

(16)

III. NONLINEAR DAIC

In this work, the relationship between the plant output signal
y(k) and control signal u(k) is given by:

y(k) = P[y(k � 1), . . . , y(k � ny), u(k), . . . , u(k � nu)],
(17)

it is important to note that the plant model P[•] is a nonlinear
functional defined as a second degree NARX model with ny =
2 and nu = 1. Thus, (17) can be rewritten as:

y(k) = c0,0 +
2X

n1=1

c1,0(n1)y(k � n1)

+
2X

n1=1

c1,0(n1)u(k � n1)

+
2X

n1=1

2X

n2=1

c2,0(n1, n2)y(k � n1)y(k � n2)

+
2X

n1=1

2X

n2=1

c1,1(n1, n2)y(k � n1)u(k � n2)

+
2X

n1=1

2X

n2=1

c0,2(n1, n2)u(k � n1)u(k � n2),

(18)

In Fig. 1 it is presented the block diagram for the nonlinear
DAIC. It is important to note that the controller, defined by a
second order Volterra model, is represented by the nonlinear
functional Ĉ[•]. In addition, it is important to note that the
controller weight vector is estimated as a function of the
reference error eref (k) and estimation error of the plant model
P̂[•], as proposed by [3] for the linear DAIC. Due to this, the
nonlinear DAIC performs well in tracking the plant reverse
dynamics and, consequently, of the reference signal r(k).

P[   ]C [   ]    

-

+

u(k) y(k)

e    (k)ref

r(k)

+

-

Plant

Controller

∑

∑

P[   ]
y(k)^

P [   ]
e  (k)c 

e       (k)mod

copy

^

^

^ . .

.

.

Fig. 1: Block diagram for the nonlinear DAIC.

The control signal u(k) obtained through the controller
Ĉ[•], represented by a second order Volterra model with
N1 = N2 = 2, is given by:

u(k) =
2X

n1=0

✓1 (n1) ec (k � n1)

+
2X

n1=0

2X

n2=0

✓2 (n1, n2) ec (k � n1) ec (k � n2) ,

(19)

where ✓1(n1) is the first order Volterra kernel and
✓2(n1, n2) is the second order Volterra kernel of Ĉ[•].
The weight vector of Ĉ[•] is given by ⇥(k) =
[✓1(0) . . . ✓1(2) ✓2(0, 0) ✓2(0, 1) . . . ✓2(2, 1) ✓2(2, 2)]T 2
R12⇥1. The weight vector ⇥(k) is estimated by the MVSS-
FLMS algorithm. Developing (19), it is obtained that:

u(k) = ✓1(0)r(k) + ✓1(1)r(k � 1) + ✓1(2)r(k � 2)
+✓2(0, 0)(r(k))2 + ✓2(0, 1)r(k)r(k � 1) + . . .
+✓2(2, 1)r(k � 2)r(k � 1) + ✓2(2, 2)(r(k � 2))2,

(20)

which, in compact form, (20) can be rewritten as follows:

u(k) = RT(k)⇥(k) = ⇥T(k)R(k), (21)

where R(k) = [r(k) r(k � 1) r(k � 2) (r(k))2 r(k)r(k �
1) . . . r(k�2)r(k�1) (r(k�2))2]T 2 R12⇥1 is the reference
signal vector.

For the estimate of the weight vector ⇥(k) be updated, it is
necessary that the update of the estimate of the weight vector
⇧(k) of the plant model P̂[•] be performed previously. For this
to be possible, it is initially necessary to obtain the estimation
error of the weight vector of P̂[•], given by emod(k) = y(k)�
ŷ(k) where ŷ(k) is the output signal of P̂[•]. The output signal
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ŷ(k) of the model P̂[•], represented by a second order Volterra
model with N1 = N2 = 2, is given by:

ŷ(k) =
2X

n1=0

⇡1 (n1)u (k � n1)

+
2X

n1=0

2X

n2=0

⇡2 (n1, n2)u (k � n1)u (k � n2) ,

(22)

where ⇡1(n1) is the first order Volterra kernel and
⇡2(n1, n2) is the second order Volterra kernel of P̂[•].
The weight vector of P̂[•] is given by ⇧(k) =
[⇡1(0) . . . ⇡1(2) ⇡2(0, 0) ⇡2(0, 1) . . . ⇡2(2, 1) ⇡2(2, 2)]T 2
R12⇥1. The weight vector ⇧(k) is estimated by the MVSS-
FLMS algorithm. Developing (19), it is obtained that:

ŷ(k) = ⇡1(0)u(k) + ⇡1(1)u(k � 1) + ⇡1(2)u(k � 2)
+⇡2(0, 0)(u(k))2 + ⇡2(0, 1)u(k)u(k � 1) + . . .
+⇡2(2, 1)u(k � 2)u(k � 1) + ⇡2(2, 2)(u(k � 2))2,

(23)
which, in compact form, (23) can be rewritten as follows:

ŷ(k) = UT(k)⇧(k) = ⇧T(k)U(k), (24)

where U(k) = [u(k) u(k � 1) u(k � 2) (u(k))2 u(k)u(k �
1) . . . u(k�2)u(k�1) (u(k�2))2]T 2 R12⇥1 is the control
signal vector.

After obtain ŷ(k), it is possible to update of the estimate
of the weight vector ⇧(k) of P̂[•]. After obtained the update
of the estimate of the weight vector ⇧(k), the error used to
update the weight vector ⇥(k) is given by:

ec(k) =
2X

n1=0

⇡1 (n1) eref (k � n1)

+
2X

n1=0

2X

n2=0

⇡2 (n1, n2) eref (k � n1) eref (k � n2) ,

(25)

developing (25), it is obtained that:
ec(k) = ⇡1(0)eref (k) + ⇡1(1)eref (k � 1)
+⇡1(2)eref (k � 2) + ⇡2(0, 0)(eref (k))2

+⇡2(0, 1)eref (k)eref (k � 1) + . . .
+⇡2(2, 1)eref (k � 2)eref (k � 1) + ⇡2(2, 2)(eref (k � 2))2,

(26)
which, in compact form, (26) can be rewritten as follows:
ec(k) = ET

ref (k)⇧(k) = ⇧T(k)Eref (k), where Eref (k) =
[eref (k) eref (k� 1) eref (k� 2) (eref (k))2 eref (k)eref (k�
1) . . . eref (k�2)eref (k�1) (eref (k�2))2]T 2 R12⇥1. The
reference error eref (k) is given by:

eref (k) = r(k)� y(k) (27)

IV. COMPUTATIONAL RESULTS

In this section, it is performed the evaluation of the proposed
methodology of nonlinear DAIC control based on second order
Volterra model in a plant described through a NARX model,
given by:
y(k) = 0.6356y(k � 1) + 0.3115y(k � 2) + 0.1341y(k � 3)
�0.0916y(k � 4)� 0.0047u(k � 1) + 0.0054u(k � 2)
+0.0082u(k � 3)� 0.0025y(k � 4)u(k � 1) + n(k),

(28)

where, to evaluate the proposed control methodology in the
presence of disturbances, a disturbance signal n(k) was added
to (28). In Fig. 2, it is shown the disturbance signal n(k).
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p
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e

Fig. 2: Disturbance signal n(k).

The sampling period used was set equal to Ta = 0.025 s and
total simulation time was set equal to 30 s. It is important to
note that the speed of evolution of the system dynamics must
be compatible with the specified sampling period, to avoid a
mismatch of the vectors described in Sections II and III. For
the MVSS-FLMS algorithm, the initial value of the step size
was set equal to µ(1) = 1⇥ 10�3. The value of the fractional
order was set equal to v = 0.6; the value of c in (15) was set
equal to 0.03. The weight vectors ⇥(k) and ⇧(k) of Volterra
models represented by the nonlinear functionals Ĉ[•] and P̂[•]
were defined as follows:

⇥(k) = [✓1(0) ✓1(1) ✓1(2) ✓2(0, 0) ✓2(0, 1) ✓2(0, 2)
✓2(1, 1) ✓2(1, 2) ✓2(2, 2)]T 2 R9⇥1

⇧(k) = [⇡1(0) ⇡1(1) ⇡1(2) ⇡2(0, 0) ⇡2(0, 1) ⇡2(0, 2)
⇡2(1, 1) ⇡2(1, 2) ⇡2(2, 2)]T 2 R9⇥1,

(29)
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Reference Signal

Plant Output Signal

Fig. 3: Plant output signal y(k).

In Fig. 3, it is shown the tracking of the reference signal
r(k) developed by the nonlinear DAIC. Due to the use of the
variable step size, a satisfactory and fast tracking of the plant
inverse dynamics and, consequently, of the reference signal
r(k) were obtained. The good performance developed by the
nonlinear DAIC designed by the MVSS-FLMS algorithm,
even in the presence of the disturbance signal n(k), is also due
to estimation of the weight vector ⇥(k) of Ĉ[•] be performed
as a function of the reference error eref (k) and estimation
error emod(k) of P̂[•].
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Fig. 4: Control signal u(k).

The control signal u(k) developed by the nonlinear DAIC
designed by the MVSS-FLMS algorithm is shown in Fig. 4. In
Figs. 5 to 7, are shown the MSE of the errors eref (k), emod(k)
and ec(k). It is important to note that the errors eref (k) and
emod(k) are used to update the estimate of the weight vector
⇥(k) of the controller Ĉ[•]; the estimation error emod(k) is
used to update the estimate of the weight vector ⇧(k) of the
model P̂[•]. Through MSE of ec(k), it is possible to note that
was obtained a satisfactory and small steady-state MSE, which
is due to tracking ability of the plant inverse dynamics and,
consequently, of the reference signal r(k) developed by the
nonlinear DAIC designed by the MVSS-FLMS algorithm.
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Fig. 5: MSE of eref (k).
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Fig. 6: MSE of ec(k).

V. CONCLUSION

Through MVSS-FLMS algorithm, where it was proposed
the use of the variable step size for the FLMS algorithm, it
was observed that the controller of DAIC satisfactorily tracked
the plant inverse dynamics, such that the model plant contains
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Fig. 7: MSE of emod(k).

a nonlinearity of polynomial type, even in the presence of the
disturbance signal. In addition, it is possible to note that at each
change of the amplitude of the disturbance signal and reference
signal, the plant output signal still continued to converge to
the reference signal.
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